Steps to One DP+莫比乌斯反演】的更多相关文章

题目链接 啊啊啊我在干什么啊.怎么这么颓一道题做这么久.. 又记错莫比乌斯反演式子了(╯‵□′)╯︵┻━┻ \(Description\) 给定\(n\).有一个初始为空的集合\(S\).令\(g\)表示S中所有数的\(\gcd\).每次随机选择一个\([1,n]\)中的数加到集合\(S\)中去,直到\(g=1\).求集合\(S\)的期望大小.(原题目描述为数列长度,\(n\)是指\(m\),我自己都看混了=-=) \(n\leq10^5\). \(Solution\) 首先不要想\(f[i][…
卧槽,这么秀吗??? 暂时留坑...…
蒟蒻数学渣呀,根本不会做. 解法是参考 https://blog.csdn.net/xs18952904/article/details/88785210 这位大佬的. 状态的设计和转移如上面博客一样:dp[i]代表当前序列的gcd为i的期望长度. 那么可以写出状态转移方程:dp[i]=(1+(x/m)∑(j|i,j≠i)dp[j]) / (1-(m/i)/m) (写得有点乱,其实和上面大佬的一样的) 这里要说一下的是 x=∑(t=1,t<=m) [ gcd(t,i)==j ]  就是怎么求1<…
题目链接: http://codeforces.com/contest/1139/problem/D 题意: 在$1$到$m$中选择一个数,加入到一个初始为空的序列中,当序列的$gcd$和为$1$时,停止加入,求序列的期望长度 数据范围: $1 \leq m \leq 10^{9}$ 分析: 定义$f[x$]为$gcd$等于$x$时把序列$gcd和$改变成1的期望长度,定义$G(x,y)$为$i$在1到$n$范围,满足$gcd(x,i)=y$,$i$的数量,得到以下公式: $$f[i]=1+\f…
\[ f[1] = 0 \] \[ f[i] = 1 + \frac{1}{m} \sum_{j = 1} ^ n f[gcd(i, j)] \ \ \ \ \ \ (i != 1) \] 然后发现后面这一块gcd的个数只可能是i的约数, 那么考虑枚举约数 \[ f[i] = 1 + \frac{1}{m}\sum_{d | i} f[d] cnt(d, i) \] \(cnt(d, i)\)表示和[1,m]内与i的gcd为d的数字个数 考虑这个东西能够怎么算, \(cnt(d, i)\)显然…
https://codeforces.com/contest/1139/problem/D 题意 每次从1,m中选一个数加入队列,假如队列的gcd==1停止,问队列长度的期望 题解 概率正着推,期望反着推 发现每加入一个数,gcd会变为原来gcd的因数 \(dp[x]\) - > \(dp[gcd(x,i)]\) 但是方程却是反方向的 图片 代码 #include<bits/stdc++.h> #define MOD 1000000007 #define MAXN 100005 #def…
stm这是div2的D题……我要对不住我这个紫名了…… 题目链接:CF原网  洛谷 题目大意:有个一开始为空的序列.每次操作会往序列最后加一个 $1$ 到 $m$ 的随机整数.当整个序列的 $\gcd$ 为 $1$ 时停止.问这个序列的期望长度对 $10^9+7$ 取模的值. $1\le m\le 10^5$. 首先很容易想到DP:$f_i$ 表示目前的 $\gcd$ 为 $i$,期望还要多少次才能结束. 那么有 $f_1=0$. 转移,直接枚举即可:$f_i=1+\dfrac{1}{m}\su…
题目大意: 给你一棵树,树上的点编号为\(1-n\).选两个点\(i.j\),能得到的得分是\(\phi(a_i*a_j)*dis(i,j)\),其中\(dis(i,j)\)表示\(a\)到\(b\)的最短距离.求一次选择能得到的得分的期望 推式子 显然是求\(\frac{1}{n(n-1)} \sum\limits_{i=1}^n \sum\limits_{j=1}^n \phi(i*j)*dis(i,j)\) 有这样一个式子\(\phi(i*j)=\frac{\phi(i)*phi(j)*g…
BZOJ_2820_YY的GCD_莫比乌斯反演 题意&分析: 首先f[i]非积性,但可以通过μ处理,所以我们考虑线筛 f[i*p]=μ[i*p/p']; 1.当i为质数时f[i]=1; 2.当i%prime[j]==0时i*prime[j]中有两个相同因子的质数乘积,即p=p',则f[i*prime[j]]=μ[i]; 3.当i%prime[j]!=0时,p!=p'的情况对f的值有影响.当p'!=p时μ[i*p/p']=-f[i],f[i*prime[j]]=μ[i]-f[i]; 再记录下f[i…
狄利克雷卷积&莫比乌斯反演总结 Prepare 1.\([P]\)表示当\(P\)为真时\([P]\)为\(1\),否则为\(0\). 2.\(a|b\)指\(b\)被\(a\)整除. 3.一些奇怪常见的函数: \(1(n)=1\) \(id(n)=n\) \(\sigma(n)=n的约数和\) \(d(n)=n的约数个数\) \(\epsilon(n)=[n==1]\) 狄利克雷卷积 数论函数 数论函数指一类定义域是正整数,值域是一个数集的函数. 加法:逐项相加就可以辣\((f+g)(x)=f…