numpy 和tensorflow 中的乘法】的更多相关文章

矩阵乘法:tf.matmul()   np.dot() ,@ 逐元素乘法:tf.multiply()  np.multiply()…
点乘和矩阵乘的区别: 1)点乘(即“ * ”) ---- 各个矩阵对应元素做乘法 若 w 为 m* 的矩阵,x 为 m*n 的矩阵,那么通过点乘结果就会得到一个 m*n 的矩阵. 若 w 为 m*n 的矩阵,x 为 m*n 的矩阵,那么通过点乘结果就会得到一个 m*n 的矩阵. w的列数只能为 1 或 与x的列数相等(即n),w的行数与x的行数相等 才能进行乘法运算. 2)矩阵乘 ---- 按照矩阵乘法规则做运算 若 w 为 m*p 的矩阵,x 为 p*n 的矩阵,那么通过矩阵相乘结果就会得到一…
点乘和矩阵乘的区别: 1)点乘(即" * ") ---- 各个矩阵对应元素做乘法 若 w 为 m*1 的矩阵,x 为 m*n 的矩阵,那么通过点乘结果就会得到一个 m*n 的矩阵. 若 w 为 m*n 的矩阵,x 为 m*n 的矩阵,那么通过点乘结果就会得到一个 m*n 的矩阵. w的列数只能为 1 或 与x的列数相等(即n),w的行数与x的行数相等 才能进行乘法运算. 2)矩阵乘 ---- 按照矩阵乘法规则做运算 若 w 为 m*p 的矩阵,x 为 p*n 的矩阵,那么通过矩阵相乘结…
广播的引出 numpy两个数组的相加.相减以及相乘都是对应元素之间的操作. import numpy as np x = np.array([[2,2,3],[1,2,3]]) y = np.array([[1,1,3],[2,2,4]]) print(x*y) #numpy当中的数组相乘是对应元素的乘积,与线性代数当中的矩阵相乘不一样 输入结果如下: ‘‘‘ [[ 2 2 9] [ 2 4 12]] ‘‘‘ 当两个数组的形状并不相同的时候,我们可以通过扩展数组的方法来实现相加.相减.相乘等操作…
Python中的list/tuple,numpy中的ndarrray与tensorflow中的tensor. 用python中list/tuple理解,仅仅是从内存角度理解一个序列数据,而非数学中标量,向量和张量. 从python内存角度理解,就是一个数值,长度为1,并且不是一个序列: 从numpy与tensorflow数学角度理解,就是一个标量,shape为(),其轴为0: [1,2,3,4,5,6] 从python内存角度理解,就是1*6或者长度为6的一个序列: 从numpy与tensorf…
[开发技巧]·TensorFlow中numpy与tensor数据相互转化 个人主页–> https://xiaosongshine.github.io/ - 问题描述 在我们使用TensorFlow进行深度学习训练时,很多时候都是与Numpy数据打招呼,例如我们csv或者照片数据等.但是我们都知道,TensorFlow训练时都是使用Tensor来存储变量的,并且网络输出的结果也是Tensor. 一般情况下我们不会感受到Numpy与Tensor之间的区别,因为TensorFlow网络在输入Nump…
tensorflow中实现batch_normalization的函数主要有两个: 1)tf.nn.moments 2)tf.nn.batch_normalization tf.nn.moments主要是用来计算均值mean和方差variance的值,这两个值被用在之后的tf.nn.batch_normalization中 tf.nn.moments(x, axis,...) 主要有两个参数:输入的batchs数据:进行求均值和方差的维度axis,axis的值是一个列表,可以传入多个维度 返回值…
一 初始化RNN 上一节中介绍了 通过cell类构建RNN的函数,其中有一个参数initial_state,即cell初始状态参数,TensorFlow中封装了对其初始化的方法. 1.初始化为0 对于正向或反向,第一个cell传入时没有之前的序列输出值,所以需要对其进行初始化.一般来讲,不用刻意取指定,系统会默认初始化为0,当然也可以手动指定其初始化为0. initial_state = lstm_cell.zero_state(batch_size, dtype=tf.float32) 2.初…
反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用于信道均衡.图像恢复.语音识别.地震学.无损探伤等未知输入估计和过程辨识方面的问题. 在神经网络的研究中,反卷积更多的是充当可视化的作用,对于一个复杂的深度卷积网络,通过每层若干个卷积核的变换,我们无法知道每个卷积核关注的是什么,变换后的特征是什么样子.通过反卷积的还原,可以对这些问题有个清晰的可视…
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程负责计算任务,所需数据直接从内存队列中获取. tf在内存队列之前,还设立了一个文件名队列,文件名队列存放的是参与训练的文件名,要训练 N个epoch,则文件名队列中就含有N个批次的所有文件名. 示例图如下: 图片来至于 https://zhuanlan.zhihu.…