hive优化之并行执行任务】的更多相关文章

1.与Oracle并行技术一样,hive在执行mapreduce作业时也可以执行并行查询.针对于不同业务场景SQL语句的执行情况,有些场景下SQL的执行是需要分割成几段去执行的,而且期间并不全是存在依赖关系.默认情况下,hive只会一段一段的执行mapreduce任务.使用并行的好处在于可以让服务器可以同时去执行那些不想关的业务场景,比如: select deptno,count(1) from emp01 group by deptno union all select deptno ,cou…
第8章 压缩和存储(Hive高级)8.1 Hadoop源码编译支持Snappy压缩8.1.1 资源准备8.1.2 jar包安装8.1.3 编译源码8.2 Hadoop压缩配置8.2.1 MR支持的压缩编码8.2.2 压缩参数配置8.3 开启Map输出阶段压缩8.4 开启Reduce输出阶段压缩8.5 文件存储格式8.5.1 列式存储和行式存储8.5.2 TextFile格式8.5.3 Orc格式8.5.4 Parquet格式8.5.5 主流文件存储格式对比实验8.6 存储和压缩结合8.6.1 修…
Hive 优化 1.核心思想: 把Hive SQL 当做Mapreduce程序去优化 以下SQL不会转为Mapreduce来执行 select仅查询本表字段 where仅对本表字段做条件过滤   Explain 显示执行计划 EXPLAIN [EXTENDED] query 2.Hive运行方式: 本地模式 集群模式   2.1开启本地模式: set hive.exec.mode.local.auto=true; 2.2注意: hive.exec.mode.local.auto.inputbyt…
1. 概述 1.1 hive的特征: 可以通过SQL轻松访问数据的工具,从而实现数据仓库任务,如提取/转换/加载(ETL),报告和数据分析: 它可以使已经存储的数据结构化: 可以直接访问存储在Apache HDFS或其他数据存储系统(如Apache HBase)中的文件: Hive除了支持MapReduce计算引擎,还支持Spark和Tez这两种分布式计算引擎: 它提供类似sql的查询语句HiveQL对数据进行分析处理: 数据的存储格式有多种,比如数据源是二进制格式,普通文本格式等等: 1.2…
Hive优化 ​ Hive的存储层依托于HDFS,Hive的计算层依托于MapReduce,一般Hive的执行效率主要取决于SQL语句的执行效率,因此,Hive的优化的核心思想是MapReduce的优化. 1.查看Hive执行计划(小白慎用) ​ Hive的SQL语句在执行之前需要将SQL语句转换成MapReduce任务,因此需要了解具体的转换过程,可以在SQL语句中输入如下命令查看具体的执行计划. --查看执行计划,添加extended关键字可以查看更加详细的执行计划 explain [ext…
1. 概述 1.1 hive的特征: 可以通过SQL轻松访问数据的工具,从而实现数据仓库任务,如提取/转换/加载(ETL),报告和数据分析: 它可以使已经存储的数据结构化: 可以直接访问存储在Apache HDFS或其他数据存储系统(如Apache HBase)中的文件: Hive除了支持MapReduce计算引擎,还支持Spark和Tez这两种分布式计算引擎: 它提供类似sql的查询语句HiveQL对数据进行分析处理: 数据的存储格式有多种,比如数据源是二进制格式,普通文本格式等等: 1.2…
Hive优化(面试宝典) 1.1 hive的随机抓取策略 理论上来说,Hive中的所有sql都需要进行mapreduce,但是hive的抓取策略帮我们 省略掉了这个过程,把切片split的过程提前帮我们做了. set hive.fetch.task.conversion=none; (一旦进行这么设置,select字段名也是需要进行mapreduce的过程,默认是more) Fetch抓取的模式可以通过 set hive.fetch.task.conversion查看,有以下3种模式:​none…
要点:优化时,把hive sql当做map reduce程序来读,会有意想不到的惊喜. 理解hadoop的核心能力,是hive优化的根本. 长期观察hadoop处理数据的过程,有几个显著的特征: 1.不怕数据多,就怕数据倾斜. 2.对jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,没半小时是跑不完的.map reduce作业初始化的时间是比较长的. 3.对sum,count来说,不存在数据倾斜问题. 4.对count(distinct )…
一.    控制hive任务中的map数: 1.    通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改): 2.    举例:a)    假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个map数…
1.Hadoop计算框架的特点 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业效率相对比较低,比如即使有几百万的表,如果多次关联多次汇总,产生十几个jobs,耗时很长.原因是map reduce作业初始化的时间是比较长的. sum,count,max,min等UDAF,不怕数据倾斜问题,hadoop在map端的汇总并优化,使数据倾斜不成问题. count(distinct),在数据量大的情况下,效率较低,如果是多count(distinct)效率更低,因为count(distinc…