Transformer+BERT+GPT+GPT2】的更多相关文章

Transformer: https://jalammar.github.io/illustrated-transformer/ BERT: https://arxiv.org/pdf/1810.04805.pdf 进化史:https://zhuanlan.zhihu.com/p/49271699…
RNN:难以并行 CNN:filter只能考虑局部的信息,要叠多层 Self-attention:可以考虑全局的信息,并且可以并行 (Attention Is All You Need) 示意图:x1, x2, x3, x4先embedding成a1, a2, a3, a4,然后输入到Self-Attention Layer输出 …
作者|huggingface 编译|VK 来源|Github Transformers是TensorFlow 2.0和PyTorch的最新自然语言处理库 Transformers(以前称为pytorch-transformers和pytorch-pretrained-bert)提供用于自然语言理解(NLU)和自然语言生成(NLG)的最先进的模型(BERT,GPT-2,RoBERTa,XLM,DistilBert,XLNet,CTRL ...) ,拥有超过32种预训练模型,支持100多种语言,并且…
目录 简介 预训练任务简介 自回归语言模型 自编码语言模型 预训练模型的简介与对比 ELMo 细节 ELMo的下游使用 GPT/GPT2 GPT 细节 微调 GPT2 优缺点 BERT BERT的预训练 输入表征 Fine-tunninng 缺点 ELMo/GPT/BERT对比,其优缺点 BERT-wwm RoBERTa ERNIE(艾尼) 1.0 ERNIE 2.0 XLNet 提出背景 排列语言模型(Permutation Language Model,PLM) Two-Stream Sel…
预训练 先在某个任务(训练集A或者B)进行预先训练,即先在这个任务(训练集A或者B)学习网络参数,然后存起来以备后用.当我们在面临第三个任务时,网络可以采取相同的结构,在较浅的几层,网络参数可以直接加载训练集A或者B训练好的参数,其他高层仍然随机初始化.底层参数有两种方式:frozen,即预训练的参数固定不变,fine-tuning,即根据现在的任务调整预训练的参数. 优势: 1.当前任务数据量少,难以训练更多的网络参数,可以加载预训练的模型,然后根据当前的任务对参数进行fine-tuning,…
1. Transformer模型 在Attention机制被提出后的第3年,2017年又有一篇影响力巨大的论文由Google提出,它就是著名的Attention Is All You Need[1].这篇论文中提出的Transformer模型,对自然语言处理领域带来了巨大的影响,使得NLP任务的性能再次提升一个台阶. Transformer是一个Seq2Seq架构的模型,所以它也由Encoder与Decoder这2部分组成.与原始Seq2Seq 模型不同的是:Transformer模型中没有RN…
原创作者 | FLPPED 参考论文: A Survey of Transformers 论文地址: https://arxiv.org/abs/2106.04554 研究背景: Transformer在人工智能的许多领域取得了巨大的成功,例如自然语言处理,计算机视觉和音频处理,也自然吸引了大量的学术和行业研究人员的兴趣. 其最初是针对seq2seq的机器翻译模型而设计的,在后续的其他工作中,以Transformer为基础的预训练模型,在不同的任务中取得了state-of-the-art 的表现…
本文介绍了一种新的语言表征模型 BERT--来自 Transformer 的双向编码器表征.与最近的语言表征模型不同,BERT 旨在基于所有层的左.右语境来预训练深度双向表征.BERT 是首个在大批句子层面和 token 层面任务中取得当前最优性能的基于微调的表征模型,其性能超越许多使用任务特定架构的系统,刷新了 11 项 NLP 任务的当前最优性能记录. 研究证明语言模型预训练可以有效改进许多自然语言处理任务,包括自然语言推断.复述(paraphrasing)等句子层面的任务,以及命名实体识别…
详细代码已上传到github: click me Abstract:    Sentiment classification is the process of analyzing and reasoning the sentimental subjective text, that is, analyzing the attitude of the speaker and inferring the sentiment category it contains. Traditional mac…
https://daiwk.github.io/posts/nlp-bert.html 目录 概述 BERT 模型架构 Input Representation Pre-training Tasks Task #1: Masked LM Task #2: Next Sentence Prediction Pre-training Procedure Fine-tuning Procedure Comparison of BERT and OpenAI GPT 实验 GLUE Datasets G…