循环神经网络-Dropout】的更多相关文章

dropout 是 regularization 方法,在rnn中使用方法不同于cnn 对于rnn的部分不进行dropout,也就是说从t-1时候的状态传递到t时刻进行计算时,这个中间不进行memory的dropout:仅在同一个t时刻中,多层cell之间传递信息的时候进行dropout. if is_training and config.keep_prob < 1: lstm_cell = tf.nn.rnn_cell.DropoutWrapper(lstm_cell, output_kee…
由于本章过长,分为两个部分,这是第一部分. 这几年提到RNN,一般指Recurrent Neural Networks,至于翻译成循环神经网络还是递归神经网络都可以.wiki上面把Recurrent Neural Networks叫做时间递归神经网络,与之对应的还有一个结构递归神经网络(recursive neural network).本文讨论的是前者. RNN是一种可以预测未来(在某种程度上)的神经网络,可以用来分析时间序列数据(比如分析股价,预测买入点和卖出点).在自动驾驶中,可以预测路线…
本章共两部分,这是第二部分: 第十四章--循环神经网络(Recurrent Neural Networks)(第一部分) 第十四章--循环神经网络(Recurrent Neural Networks)(第二部分) 14.4 深度RNN 堆叠多层cell是很常见的,如图14-12所示,这就是一个深度RNN. 图14-12 深度RNN(左),随时间展开(右) 在TensorFlow中实现深度RNN,需要创建多个cell并将它们堆叠到一个MultiRNNCell中.下面的代码创建了三个完全相同的cel…
1. 针对机器学习/深度神经网络“记忆能力”的讨论 0x1:数据规律的本质是能代表此类数据的通用模式 - 数据挖掘的本质是在进行模式提取 数据的本质是存储信息的介质,而模式(pattern)是信息的一种表现形式.在一个数据集中,模式有很多不同的表现形式,不管是在传统的机器学习训练的过程,还是是深度学习的训练过程,本质上都是在进行模式提取. 而从信息论的角度来看,模式提取也可以理解为一种信息压缩过程,通过将信息从一种形式压缩为另一种形式.压缩的过程不可避免会造成信息丢失. 笔者这里列举几种典型的体…
MNIST 卷积神经网络.https://github.com/nlintz/TensorFlow-Tutorials/blob/master/05_convolutional_net.py .TensorFlow搭建卷积神经网络(CNN)模型,训练MNIST数据集. 构建模型. 定义输入数据,预处理数据.读取数据MNIST,得到训练集图片.标记矩阵,测试集图片标记矩阵.trX.trY.teX.teY 数据矩阵表现.trX.teX形状变为[-1,28,28,1],-1 不考虑输入图片数量,28x…
1.导入依赖包,初始化一些常量 import collections import numpy as np import tensorflow as tf TRAIN_DATA = "./data/ptb.train.txt" # 训练数据路径 TEST_DATA = "./data/ptb.test.txt" # 测试数据路径 EVAL_DATA = "./data/ptb.valid.txt" # 验证数据路径 HIDDEN_SIZE = 3…
包括卷积神经网络(CNN)在内的各种前馈神经网络模型, 其一次前馈过程的输出只与当前输入有关与历史输入无关. 递归神经网络(Recurrent Neural Network, RNN)充分挖掘了序列数据中的信息, 在时间序列和自然语言处理方面有着重要的应用. 递归神经网络可以展开为普通的前馈神经网络: 长短期记忆模型(Long-Short Term Memory)是RNN的常用实现. 与一般神经网络的神经元相比, LSTM神经元多了一个遗忘门. LSTM神经元的输出除了与当前输入有关外, 还与自…
一.循环神经网络简介 循环神经网络的主要用途是处理和预测序列数据.循环神经网络刻画了一个序列当前的输出与之前信息的关系.从网络结构上,循环神经网络会记忆之前的信息,并利用之前的信息影响后面节点的输出. 下图展示了一个典型的循环神经网络. 循环神经网络的一个重要的概念就是时刻.上图中循环神经网络的主体结构A的输入除了来自输入层的Xt,还有一个自身当前时刻的状态St. 在每一个时刻,A会读取t时刻的输入Xt,并且得到一个输出Ht.同时还会得到一个当前时刻的状态St,传递给下一时刻t+1. 因此,循环…
RNN适用场景 循环神经网络(Recurrent Neural Network)适合处理和预测时序数据 RNN的特点 RNN的隐藏层之间的节点是有连接的,他的输入是输入层的输出向量.extend(上一时刻隐藏层的状态向量). demo:单层全连接网络作为循环体的RNN 输入层维度:x 隐藏层维度:h 每个循环体的输入大小为:x+h 每个循环体的输出大小为:h 循环体的输出有两个用途: 下一时刻循环体的输入的一部分 经过另一个全连接神经网络,得到当前时刻的输出 序列长度 理论上RNN支持任意序列长…
文本情感分类 文本分类是自然语言处理的一个常见任务,它把一段不定长的文本序列变换为文本的类别.本节关注它的一个子问题:使用文本情感分类来分析文本作者的情绪.这个问题也叫情感分析,并有着广泛的应用. 同搜索近义词和类比词一样,文本分类也属于词嵌入的下游应用.在本节中,我们将应用预训练的词向量和含多个隐藏层的双向循环神经网络与卷积神经网络,来判断一段不定长的文本序列中包含的是正面还是负面的情绪.后续内容将从以下几个方面展开: 文本情感分类数据集 使用循环神经网络进行情感分类 使用卷积神经网络进行情感…