后缀数组(SA)及height数组】的更多相关文章

自己看着大牛的论文学了一下后缀数组,看了好久好久,想了好久好久才懂了一点点皮毛TAT 然后就去刷传说中的后缀数组神题,poj3693是进化版的,需要那个相同情况下字典序最小,搞这个搞了超久的说. 先简单说一下后缀数组.首先有几个重要的数组: ·SA数组(后缀数组):保存所有后缀排序后从小到大的序列.[即SA[i]=j表示排名第i的后缀编号为j]        ·rank数组(名次数组):记录后缀的名次.[即rank[i]=j表示编号为i的后缀排名第j] 用倍增算法可以在O(nlogn)时间内得出…
最近感觉自己越来越蒟蒻了--后缀数组不会,费用流不会-- 看着别人切一道又一道的题,我真是很无奈啊-- 然后,我花了好长时间,终于弄懂了后缀数组. 后缀数组是什么? 后缀SASASA数组 给你一个字符串,让你将每个后缀排序,就是一个后缀数组. 比如,字符串为ababa,就会搞出一个这样的东西: a aba ababa ba baba SA={4,2,0,3,1}; 其中,每个后缀用开始的位置来表示. rankrankrank数组 相当于逆着的SASASA,rank[sa[i]]=irank[sa…
height数组:定义 height[i] = suffix[i-1] 和 suffix[i] 的最长公共前缀,也就是排名相邻的两个后缀的最长公共前缀.那么对于 j 和 k 不妨设 Rank[j] < Rank[k] ,则有以下性质: suffix[j] 和 suffix[k] 的最长公共前缀为 height[Rank[j]+1] , height[Rank[j]+2],......,height[Rank[k]] 中的最小值. 例如,字符串为“aabaaaab”,求后缀“abaaaab”和后缀…
bzoj3796Mushroom追妹纸 题目描述 Mushroom最近看上了一个漂亮妹纸.他选择一种非常经典的手段来表达自己的心意——写情书.考虑到自己的表达能力,Mushroom决定不手写情书.他从网上找到了两篇极佳的情书,打算选择其中共同的部分.另外,Mushroom还有个一个情敌Ertanis,此人也写了封情书给妹子. Mushroom不希望自己的情书中完整的出现了情敌的情书.(这样抄袭的事情就暴露了). Mushroom把两封情书分别用字符串s1和s2来表示,Ertanis的情书用字符串…
Given a string, we need to find the total number of its distinct substrings. Input \(T-\) number of test cases. \(T<=20\); Each test case consists of one string, whose length is \(<=1000\) Output For each test case output one number saying the numbe…
后缀数组(SA)总结 这个东西鸽了好久了,今天补一下 概念 后缀数组\(SA\)是什么东西? 它是记录一个字符串每个后缀的字典序的数组 \(sa[i]\):表示排名为\(i\)的后缀是哪一个. \(rnk[i]\):可以理解为\(SA\)数组的逆,记录后缀\(i\)的排名是多少,\(rnk[SA[i]]=i\). \(lcp[i]\):别人一般叫\(height\),表示后缀\(SA[i]\)与\(SA[i-1]\)的最长公共前缀的长度. 后缀排序 求出后缀数组的算法,模板题 代码 先上代码,便…
模板奉上 int rank[maxn],height[maxn]; void calheight(int *r,int *sa,int n) { ; ;i<=n;i++) rank[sa[i]]=i; ;i<n;height[rank[i++]]=k) ,j=sa[rank[i]-];r[i+k]==r[j+k];k++) //求h[i] = height[rank[i]]; ; return; } 概念: (1)height 数组:定义height[i]=suffix(SA[i-1])和su…
什么是后缀数组 后缀数组\(sa[i]\)表示字符串中字典序排名为\(i\)的后缀位置 \(rk[i]\)表示字符串中第\(i\)个后缀的字典序排名 举个例子: ababa a b a b a rk:3 5 2 4 1 sa: 5(a) 3(aba) 1(ababa) 4(ba) 2(baba) 那么就有\(sa[rk[i]]=rk[sa[i]]=i\) 后缀数组的求法 二周目 倍增法 看一会儿还是比较好记的 但没有理解每句话是在干什么的话以后再写就会没有思路 因此这里简述一下基本过程和一些关键…
前言 看这篇博客前,先去了解一下后缀数组的基本操作吧:后缀数组入门(一)--后缀排序. 这篇博客的内容,主要建立于后缀排序的基础之上,进一步研究一个\(Height\)数组以及如何求\(LCP\). 什么是\(LCP\) \(LCP\),即\(Longest\ Common\ Prefix\),是最长公共前缀的意思. 而在后缀数组中,\(LCP(i,j)\)表示后缀\(_{SA_i}\)与后缀\(_{SA_j}\)的最长公共前缀的长度,注意是\(SA_i\)和\(SA_j\),而不是\(i\)和…
点此看题面 大致题意: 求两个字符串中最长公共子串的长度. 关于后缀数组 关于\(Height\)数组的概念以及如何用后缀数组求\(Height\)数组详见这篇博客:后缀数组入门(二)--Height数组与LCP. 大致思路 由于后缀数组是处理一个字符串的,因此我们第一步自然是将这两个字符串拼在一起,并在中间加一个不可能出现的字符,例如\(\%\). 然后我们用后缀数组求出其\(Height\)数组. 注意一个性质,答案肯定是按字典序排名后相邻后缀的\(LCP\)值中的最大值. 因此,我们只要枚…