题意:给定n个点的初始坐标x和速度v(保证n个点的初始坐标互不相同), d(i,j)是第i个和第j个点之间任意某个时刻的最小距离,求出n个点中任意一对点的d(i,j)的总和. 题解:可以理解,两个点中初始坐标较小的点的速度更大时,总有一个时刻后面的点会追上前面的点,d(i,j) =0. 否则,即后面的点的速度 <= 前面的点的速度时,两点之间的距离只会越来越大,d(i,j) = abs(xi - xj) (初始距离). 可以用直线来辅助理解:x = xi + v*t,横轴为t,纵轴为x,若两直线…