Problem: TSC, time series classification; Traditional TSC: find global similarities or local patterns/subsequence(shapelet). We extract statistical features from VG to facilitate TSC Introduction: Global similarity: the difference between TSC and oth…
Spark(3) - Extracting, transforming, selecting features 官方文档链接:https://spark.apache.org/docs/2.2.0/ml-features.html 概述 该章节包含基于特征的算法工作,下面是粗略的对算法分组: 提取:从原始数据中提取特征: 转换:缩放.转换.修改特征: 选择:从大的特征集合中选择一个子集: 局部敏感哈希:这一类的算法组合了其他算法在特征转换部分(LSH最根本的作用是处理海量高维数据的最近邻,也就是…
论文信息 论文标题:Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with Group Discrimination论文作者:Yizhen Zheng, Shirui Pan, Vincent Cs Lee, Yu Zheng, Philip S. Yu论文来源:2022,NeurIPS论文地址:download 论文代码:download 1 Introduction…
Problem: time series classification shapelet-based method: two issues 1. for multi-class imbalanced classification tasks, these methods will ignore the shapelets that can distinguish minority class from other classes. 2. the shapelets are fixed after…
Problem: time series classification shallow RNNs: the first layer splits the input sequence and runs several independent RNNs.  The second layer consumes the output of the first layer to capture long dependencies. We improve inference time over stand…
Problem: time series forecasting Challenge: forecasting for non-stationary signals and multiple future steps prediction ?? how to deal with non-stationary datasets?? Introduction one-step prediction problem VS multi-step prediction; multi-step foreca…
http://nichol.as/papers/Lowe/Distinctive Image Features from Scale-Invariant.pdf Abstract This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of…
Distinctive Image Features from Scale-Invariant Keypoints,这篇论文是图像识别领域SIFT算法最为经典的一篇论文,导师给布置的第一篇任务就是它.网上找了好多找不到中译本,那就自己动手丰衣足食吧,顺便造福后人,花时间翻译啃下来并做一个笔记在这吧. ---------------------------------------------------------------------------------------------------…
Problem Forecasting time series. Other methods' drawback: even though existing methods (exponential smoothing, auto-regression and moving average-MA, ARIMA, maximum entropy method, modified grey model) have a good performance, they are not accurate e…
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in this task according to this metric; authors are willing to reveal the method White background = authors are willing to reveal the method Grey background…
Paper about Event Detection. #@author: gr #@date: 2014-03-15 #@email: forgerui@gmail.com 看一些相关的论文. 1. <Efficient Visual Event Detection using Volumetric Features> ICCV 2005 扩展2D box 特征到3D时空特征. 构建一个实时的检测器基于容积特征. 采用传统的兴趣点方法检测事件. 2. <ARMA-HMM: A New…
IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society 2017, ISBN 978-1-5386-1032-9 Oral Session 1 Globally-Optimal Inlier Set Maximisation for Simultaneous Camera Pose and Feature Corre…
LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016   Neural Networks these days are the "go to" thing when talking about new fads in machine learning. As such, there's a plethora of courses and tutorials out there on the basic vani…
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinci 10:30  ARS-L1.1—GROUP STRUCTURED DIRTY DICTIONARY LEARNING FOR CLASSIFICATION Yuanming Suo, Minh Dao, Trac Tran, Johns Hopkins University, USA; Hojj…
A Statistical View of Deep Learning (II): Auto-encoders and Free Energy With the success of discriminative modelling using deep feedforward neural networks (or using an alternative statistical lens, recursive generalised linear models) in numerous in…
这篇文章目前发表在arxiv,日期:20180309. 这是一篇针对多种综合性信息的视觉显著性检测的综述文章. 注:有些名词直接贴原文,是因为不翻译更容易理解.也不会逐字逐句都翻译,重要的肯定不会错过^_^.我们的目的是理解文章思想,而不是为了翻译而纯粹翻译.翻译得不好,敬请包涵~ 欢迎同道中人QQ交流:1505543113 abstract: 随着采集技术( acquisition technology)的发展,许多综合性信息(comprehensive information)诸如depth…
LSTM Neural Network for Time Series Prediction Wed 21st Dec 2016 Neural Networks these days are the “go to” thing when talking about new fads in machine learning. As such, there’s a plethora of courses and tutorials out there on the basic vanilla neu…
转自:http://www.wowotech.net/basic_subject/meltdown.html#6596 摘要(Abstract) The security of computer systems fundamentally relies on memory isolation, e.g., kernel address ranges are marked as non-accessible and are protected from user access. In this p…
使用图聚类方法:Malware Classification using Graph Clustering 见 https://github.com/rahulp0491/Malware-Classifier 代码参考:https://github.com/bindog/ToyMalwareClassification,https://github.com/xiaozhouwang/kaggle_Microsoft_Malware #微软恶意代码分类 比赛说明和数据下载 https://www.…
论文地址:使用半监督堆栈式自动编码器实现包含记忆的人工带宽扩展 作者:Pramod Bachhav, Massimiliano Todisco and Nicholas Evans 博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/10889975.html 摘要 为了提高宽带设备从窄带设备或基础设施接收语音信号的质量,开发了人工带宽扩展(ABE)算法.以动态特征或从邻近帧捕获的explicit memory(显式内存)的形式利用上下文信息,在A…
Kibana是一个为 ElasticSearch 提供的数据分析的 Web 接口.可使用它对日志进行高效的搜索.可视化.分析等各种操作.Kibana目前最新的版本5.0.2,回顾一下Kibana 3和Kibana 4的界面. 下面的图展示的是Kibana 3的界面,所有的仪表盘直接放置主页. 下面的图展示的是Kibana 4的界面,和Kibana 3最大的区别是将原来的主体分成三个部分,分别是发现页.可视化.仪表盘. 下面是目前Kibana 5最新版本的界面.相比较Kibana 4除了界面的风格…
Awesome系列的Java资源整理.awesome-java 就是akullpp发起维护的Java资源列表,内容包括:构建工具.数据库.框架.模板.安全.代码分析.日志.第三方库.书籍.Java 站点等等. 经典的工具与库 (Ancients) In existence since the beginning of time and which will continue being used long after the hype has waned. Apache Ant - Build…
Lucene 源码剖析 1 目录 2 Lucene是什么 2.1.1 强大特性 2.1.2 API组成- 2.1.3 Hello World! 2.1.4 Lucene roadmap 3 索引文件结构 3.1 索引数据术语和约定 - 3.1.1 术语定义 3.1.2 倒排索引(inverted indexing) 3.1.3 Fields的种类 3.1.4 片断(segments) 3.1.5 文档编号(document numbers) 3.1.6 索引结构概述 3.1.7 索引文件中定义的…
三代纠错的重要性不言而喻,三代的核心优势就是长,唯一的缺点就是错误率高,但好就好在错误是随机分布的,可以通过算法解决,这也就是为什么现在有这么多针对三代开发的纠错工具. 纠错和组装是分不开的,纠错就是为了组装,单纯的为了纠错而纠错是没有意义的. 目前的算法大致可以分为三种:1.三代数据自纠:2.二代对三代纠:3.二代三代混合纠错. 目前已有的三代纠错程序: PacBioToCA 自纠(falcon也是用MHAP,SMRT的HGAP使用的是另一种速度慢的自纠算法,自纠的核心是多重序列比对) CCS…
Kibana+X-Pack介绍使用(全)   Kibana是一个为 ElasticSearch 提供的数据分析的 Web 接口.可使用它对日志进行高效的搜索.可视化.分析等各种操作.Kibana目前最新的版本5.0.2,回顾一下Kibana 3和Kibana 4的界面. 下面的图展示的是Kibana 3的界面,所有的仪表盘直接放置主页. 下面的图展示的是Kibana 4的界面,和Kibana 3最大的区别是将原来的主体分成三个部分,分别是发现页.可视化.仪表盘. 下面是目前Kibana 5最新版…
Awesome Java A curated list of awesome Java frameworks, libraries and software. Awesome Java Ancients Bean Mapping Build Bytecode Manipulation Cluster Management Code Analysis Code Coverage Compiler-compiler Configuration Constraint Satisfaction Prob…
    博士生课程报告       视觉信息检索技术                 博 士 生:施 智 平 指导老师:史忠植 研究员       中国科学院计算技术研究所   2005年1月   目 录 第1章 基于内容的多媒体检索技术综述    3 第2章 图像特征的提取与表达    9 2.1 颜色特征的提取    9 2.2 纹理特征的提取    12 2.3 形状特征的提取    15 2.4 图像的空间关系特征    19 2.5 多维图像特征的索引    20 第3章 相似度量方法…
. RecyclerView extends ViewGroupimplements ScrollingView NestedScrollingChild java.lang.Object    ↳ android.view.View      ↳ android.view.ViewGroup        ↳ android.support.v7.widget.RecyclerView Known Direct Subclasses HorizontalGridView, VerticalGr…
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 项目合作QQ:231469242 变量筛选:(逻辑回归) 好处: 变量少,模型运行速度快,更容易解读和理解 坏处: 会牺牲掉少量精确性 变量不筛选:(r…
原文链接 Awesome Java A curated list of awesome Java frameworks, libraries and software. Contents Projects Bean Mapping Build Bytecode Manipulation Caching CLI Cluster Management Code Analysis Code Coverage Code Generators Compiler-compiler Configuration…