NBIS指纹特征提取与匹配软件使用】的更多相关文章

1. docker 创建虚拟centos 环境 2. docker 安装wget 工具 3.wget下载源代码 wget http://nigos.nist.gov:8080/nist/nbis/nbis_v5_0_0.zip 4. centos 安装unzip解压 yum install unzip -y 5. centos 安装make cmake 等 yum install cmake -y 6. 运行自带的配置文件sh setup.sh <FINAL INSTALLATION DIR>…
SIFT算法的过程实质是在不同尺度空间上查找特征点(关键点),用128维方向向量的方式对特征点进行描述,最后通过对比描述向量实现目标匹配. 概括起来主要有三大步骤: 1.提取关键点: 2.对关键点附加详细的信息(局部特征)也就是所谓的描述器: 3.通过两方特征点(附带上特征向量的关键点)的两两比较找出相互匹配的若干对特征点,建立物体间的对应关系. Opencv中Sift算子的特征提取是在SiftFeatureDetector类中的detect方法实现的. 特征点描述是在SiftDescripto…
一次对Web应用的渗透,九成都是从信息收集开始,所以信息收集就显得尤为重要.关键信息的收集可以使你在后期渗透的时候更加的得心应手,把渗透比喻成走黑暗迷宫的话,那信息收集可以帮你点亮迷宫的大部分地图. 信息收集涉及的点特别多,本次开发的软件主要是针对搭建Web的操作系统以及开发的端口,搭建Web的Server以及大概版本,搭建Web的CMS(国内常见的一些CMS) 避免重复造轮子,下面介绍一些软件的一些特点和制作时的思路. 1.Web操作系统以及开发的端口 程序中使用了nmap的接口,针对不同的系…
1.定义特征提取器和描述子提取器: cv::Ptr<cv::FeatureDetector> detector; cv::Ptr<cv::DescriptorExtractor> descriptor; 2.设置提取器的类型(ORB\SIFT\SURF) detector=cv::FeatureDetector::create("ORB"); // 如果使用 sift, surf ,之前要初始化nonfree模块 // cv::initModule_nonfre…
ORB特征是目前最优秀的特征提取与匹配算法之一,下面具体讲解一下: 特征点的检测 图像的特征点可以简单的理解为图像中比较显著显著的点,如轮廓点,较暗区域中的亮点,较亮区域中的暗点等.ORB采用FAST(features from accelerated segment test)算法来检测特征点.这个定义基于特征点周围的图像灰度值,检测候选特征点周围一圈的像素值,如果候选点周围领域内有足够多的像素点与该候选点的灰度值差别够大,则认为该候选点为一个特征点. 其中I(x)为圆周上任意一点的灰度,I(…
Opencv中Surf算子提取特征,生成特征描述子,匹配特征的流程跟Sift是完全一致的,这里主要介绍一下整个过程中需要使用到的主要的几个Opencv方法. 1. 特征提取 特征提取使用SurfFeatureDetector类中的detect方法,先定义一个SurfFeatureDetector类的对象,通过对象调用detect方法就可以提取输入图像的Surf特征.可以使用不带参数的默认构造函数构建SurfFeatureDetector对象,也可以使用含参数的构造函数: CV_WRAP SURF…
目录 sift sift特征简介 sift特征提取步骤 surf surf特征简介 surf特征提取步骤 orb orb特征简介 orb特征提取算法 代码实现 特征提取 特征匹配 附录 sift sift特征简介 SIFT(Scale-Invariant Feature Transform)特征,即尺度不变特征变换,是一种计算机视觉的特征提取算法,用来侦测与描述图像中的局部性特征. 实质上,它是在不同的尺度空间上查找关键点(特征点),并计算出关键点的方向.SIFT所查找到的关键点是一些十分突出.…
    信号的多径传播对环境具有依赖性,呈现出非常强的特殊性.对于每个位置而言,该位置上信道的多径结构是惟一的,终端发射的无线电渡经过反射和折射,产生与周围环境密切相关的特定模式的多径信号,这样的多径特征可以认为是该位置的“指纹”.基站天线阵列检测信号的幅度和相位等特性,提取多径干扰特征参数,将该参数与预先存储在数据库中的指纹数据进行匹配,找出最相似的结果来进行定位.     位置指纹定位的实施一般可以分为两个阶段:第一阶段为训练/离线阶段,主要工作是采集所需定位区域各参考节点(RP,Refer…
特征提取是计算机视觉和图像处理中的一个概念.它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征.特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点.连续的曲线或者连续的区域. 特征的定义:         至今为止特征没有万能和精确的定义.特征的精确定义往往由问题或者应用类型决定.特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点.因此一个算法是否成功往往由它使用和定义的特征决定.因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像…
特征提取是计算机视觉和图像处理中的一个概念.它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征.特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点.连续的曲线或者连续的区域. 特征的定义  至今为止特征没有万能和精确的定义.特征的精确定义往往由问题或者应用类型决定.特征是一个数字图像中"有趣"的部分,它是许多计算机图像分析算法的起点.因此一个算法是否成功往往由它使用和定义的特征决定.因此特征提取最重要的一个特性是"可重复性":同一…