TensorRT入门】的更多相关文章

本文转载于:子棐之GPGPU 的 TensorRT系列入门篇 学习一下加深印象 Why TensorRT 训练对于深度学习来说是为了获得一个性能优异的模型,其主要的关注点在与模型的准确度.精度等指标.推理(inference)则不一样,其没有了训练中的反向迭代过程,是针对新的数据进行预测,而我们日常生活中使用的AI服务都是推理服务.相较于训练,推理的关注点不一样,从而也给现有的技术带来了新的挑战. 需求 现有框架的局限性 影响 高吞吐率 无法处理大量和高速的数据 增加了单次推理的开销 低响应时间…
​  前言 本文系统全面地介绍了Attention机制的不同类别,介绍了每个类别的原理.优缺点. 欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读.CV招聘信息. 概述 Attention机制目的在于聚焦有用的信息,并减少不重要信息的比重.Attention机制可以分为6大类,包括4个基础类别和2个组合类别.4个基础类别分别是通道注意力(channel attention),空间注意力(spatial attention),时间注意力(temporal atte…
​ 最近公众号的交流群满了,我们决定搞一个免费的知识星球,让大家在里面交流.以往都是我们写原创,大家阅读,读者之间没什么交流.与此同时,在CV技术指南交流群里,大部分问题都得到了很好地解决,但从来没有系统性地记录下来这些问题的解决方案,以至于很多问题都被重复性问. 为了方便读者之间进行论文交流,为了将所有问题梳理并记录系统性的解决方案,我们建设了这个知识星球[CV技术指南(免费版)] 在知识星球里我们搞了很多标签,大家可以在各个标签下积极发论文笔记.相关问题.环境配置记录等.在不久的将来,当大家…
​  前言 YOLOv5 是在 YOLOv4 出来之后没多久就横空出世了.今天笔者介绍一下 YOLOv5 的相关知识.目前 YOLOv5 发布了新的版本,6.0版本.在这里,YOLOv5 也在5.0基础上集成了更多特性,同时也对模型做了微调,并且优化了模型大小,减少了模型的参数量.那么这样,就更加适合移动端了. 欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读.CV招聘信息. ​ YOLOv5 网络模型结构 与之前的 YOLOv3.YOLOv4 不同,v3.v4…
​  前言 本文主要探究了轻量模型的设计.通过使用 Vision Transformer 的优势来改进卷积网络,从而获得更好的性能. 欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读.CV招聘信息. ​ 论文:https://arxiv.org/abs/2203.03952 代码:https://github.com/hkzhang91/EdgeFormer 核心内容 本文主要探究了轻量模型的设计.通过使用 Vision Transformer 的优势来改进卷积…
​  前言  本文介绍了NMS的应用场合.基本原理.多类别NMS方法和实践代码.NMS的缺陷和改进思路.介绍了改进NMS的几种常用方法.提供了其它不常用的方法的链接. 本文很早以前发过,有个读者评论说没有介绍多类别NMS让他不满意,因此特来补充.顺便补充了NMS的缺点和改进思路. 欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读.CV招聘信息. Non-Maximum Suppression(NMS)非极大值抑制.从字面意思理解,抑制那些非极大值的元素,保留极大…
​  前言 训练过程主要是指编写train.py文件,其中包括参数的解析.训练日志的配置.设置随机数种子.classdataset的初始化.网络的初始化.学习率的设置.损失函数的设置.优化方式的设置.tensorboard的配置.训练过程的搭建等. 由于篇幅问题,这些内容将分成多篇文章来写.本文介绍参数解析的两种方式. 欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读.CV招聘信息. 一个模型中包含众多的训练参数,如文件保存目录.数据集目录.学习率.epoch数…
基于TensorRT优化的Machine Translation 机器翻译系统用于将文本从一种语言翻译成另一种语言.递归神经网络(RNN)是机器翻译中最流行的深度学习解决方案之一. TensorRT机器翻译示例的一些示例包括: Neural Machine Translation (NMT) Using A Sequence To Sequence (seq2seq) Model Building An RNN Network Layer By Layer 4.1. Neural Machine…
Recommenders with TensorRT 推荐系统用于向社交网络.媒体内容消费和电子商务平台的用户提供产品或媒体推荐.基于MLP的神经协作滤波器(NCF)推荐器使用一组完全连接或矩阵乘法层来生成推荐.              TensorRT推荐人示例的一些示例包括: Movie Recommendation Using Neural Collaborative Filter (NCF) Movie Recommendation Using MPS (Multi-Process S…
NVIDIA TensorRT高性能深度学习推理 NVIDIA TensorRT 是用于高性能深度学习推理的 SDK.此 SDK 包含深度学习推理优化器和运行时环境,可为深度学习推理应用提供低延迟和高吞吐量. 在推理过程中,基于 TensorRT 的应用程序的执行速度可比 CPU 平台的速度快 40 倍.借助 TensorRT,您可以优化在所有主要框架中训练的神经网络模型,精确校正低精度,并最终将模型部署到超大规模数据中心.嵌入式或汽车产品平台中. TensorRT 以 NVIDIA 的并行编程…