前提:要实现多模型部署,首先要了解并且熟练实现单模型部署,可以借助官网文档,使用Docker实现部署. 1. 首先准备两个你需要部署的模型,统一的放在multiModel/文件夹下(文件夹名字可以任意取),其目录结构如下: multiModel/├── model1 │ └── 00000123 │ ├── saved_model.pb │ └── variables │ ├── variables.data-00000-of-00001 │ └── variables.index ├── mo…
TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接下来以自己项目中的代码为例. 项目中模型的代码: class TensorFlowDKT(object): def __init__(self, config, batch_size): # 导入配置好的参数 self.hiddens = hiddens = config.modelConfig.h…
[摘要] Tensorflow Serving 是tf模型持久化的重要工具,本篇介绍如何通过Docker compose搭建并调试TensorFlow Serving TensorFlow Serving GitHub地址: https://github.com/tensorflow/serving 建立docker-compose 文件目录 在serving下建立docker-compose.yml文件. 一.下载安装测试TensorFlow Serving正常运行 拉取最近版本的docker…
承接移动端目标识别(2) 使用TensorFlow Lite在移动设备上运行         在本节中,我们将向您展示如何使用TensorFlow Lite获得更小的模型,并允许您利用针对移动设备优化的操作. TensorFlow Lite是TensorFlow针对移动和嵌入式设备的轻量级解决方案.它支持端上的机器学习推理,具有低延迟和小二进制模型大小. TensorFlow Lite使用了许多技术,例如允许更小和更快(定点数学)模型的量化内核. 对于本节,您需要从源代码构建TensorFlow…
一.TensorFlow Serving简介 TensorFlow Serving是GOOGLE开源的一个服务系统,适用于部署机器学习模型,灵活.性能高.可用于生产环境. TensorFlow Serving可以轻松部署新算法和实验,同时保持相同的服务器架构和API,它具有以下特性: 支持模型版本控制和回滚 支持并发,实现高吞吐量 开箱即用,并且可定制化 支持多模型服务 支持批处理 支持热更新 支持分布式模型 易于使用的inference api 为gRPC expose port 8500,为…
在某些场景下,我们需要将机器学习或者深度学习模型部署为服务给其它地方调用,本文接下来就讲解使用python的flask部署服务的基本过程. 1. 加载保存好的模型 为了方便起见,这里我们就使用简单的分词模型,相关代码如下:model.py import jieba class JiebaModel: def load_model(self): self.jieba_model = jieba.lcut def generate_result(self, text): return self.ji…
欢迎关注磐创博客资源汇总站: http://docs.panchuang.net/ 欢迎关注PyTorch官方中文教程站: http://pytorch.panchuang.net/ 专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60分钟入门 PyTorch入门 PyTorch自动微分 PyTorch神经网络 PyTorch图像分类器 PyTorch数据并行处理 第三章:PyTorch之入门强化 数据加载和处理 PyTorch…
http://blog.csdn.net/wangjian1204/article/details/68928656 本文转载自:https://zhuanlan.zhihu.com/p/23361413 ,原题:TensorFlow Serving 尝尝鲜 2016年,机器学习在 Alpha Go 与李世石的世纪之战后变得更加炙手可热.Google也在今年推出了 TensorFlow Serving 又加了一把火. TensorFlow Serving 是一个用于机器学习模型 serving…
昨晚终于实现了Tensorflow模型的部署 使用TensorFlow Serving 1.使用Docker 获取Tensorflow Serving的镜像,Docker在国内的需要将镜像的Repository地址设置为阿里云的加速地址,这个大家可以自己去CSDN上面找 然后启动docker 2.使用Tensorflow 的 SaveModelBuilder保存Tensorflow的计算图模型,并且设置Signature, Signature主要用来标识模型的输入值的名称和类型 builder…
将Tensorflow模型部署成Restful接口 下面是实现过程,整个操作都是在Linux上面实现的,因为Tensorflow Serving 目前还只支持Linux 这个意义真的是革命性的,因为从此以后大家就可以将训练好的模型真正的 通过Restful接口与其他所有的ERP 或者 CRM系统进行集成啦 上面这个图片是 Server加载模型,并且成功运行 上面这张图片是调用Call Restful 接口的Python 程序来调用Server上面的模型进行批量识别, 由结果可见预测的错误率是 1…