任务:在这个问题中,你将实现稀疏自编码器算法,并且展示它怎么发现边缘是自然图像的一个好的表示. 在文件 sparseae_exercise.zip中,我们已经提供了一些Matlab中的初始代码,你应该将你的代码写在文件中的”YOUR CODE HERE“下面.你必须完成以下文件:samplesIMAGES.m, sparseAutoencoderCost.m, computeNumericalGradient.m.在train.m中的开始代码展示了这些函数是怎样被使用的. 明确地,在这个练习中你…
稀疏自编码器 Sparse Autoencoder 一神经网络(Neural Networks) 1.1 基本术语 神经网络(neural networks) 激活函数(activation function) 偏置项(bias units) 激活值(activation) 前向传播(forward propagation) 前馈神经网络(feedforward neural network) 1.2 神经元(neuron)模型 这个"神经元"是一个以及偏置项+1为输入值的运算单元,其…
斯坦福deep learning教程中的自稀疏编码器的练习,主要是参考了   http://www.cnblogs.com/tornadomeet/archive/2013/03/20/2970724.html,没有参考肯定编不出来...Σ( ° △ °|||)︴  也当自己理解了一下 这里的自稀疏编码器,练习上规定是64个输入节点,25个隐藏层节点(我实验中只有20个),输出层也是64个节点,一共有10000个训练样本 具体步骤: 首先在页面上下载sparseae_exercise.zip S…
1前言 本人写技术博客的目的,其实是感觉好多东西,很长一段时间不动就会忘记了,为了加深学习记忆以及方便以后可能忘记后能很快回忆起自己曾经学过的东西. 首先,在网上找了一些资料,看见介绍说UFLDL很不错,很适合从基础开始学习,Adrew Ng大牛写得一点都不装B,感觉非常好,另外对我们英语不好的人来说非常感谢,此教程的那些翻译者们!如余凯等.因为我先看了一些深度学习的文章,但是感觉理解得不够,一般要自己编程或者至少要看懂别人的程序才能理解深刻,所以我根据该教程的练习,一步一步做起,当然我也参考了…
一大波matlab代码正在靠近.- -! sparse autoencoder的一个实例练习,这个例子所要实现的内容大概如下:从给定的很多张自然图片中截取出大小为8*8的小patches图片共10000张,现在需要用sparse autoencoder的方法训练出一个隐含层网络所学习到的特征.该网络共有3层,输入层是64个节点,隐含层是25个节点,输出层当然也是64个节点了. main函数,  分五步走,每个函数的实现细节在下边都列出了. %%==========================…
Sparse Autoencoder稀疏自编码器实验报告 1.Sparse Autoencoder稀疏自编码器实验描述 自编码神经网络是一种无监督学习算法,它使用了反向传播算法,并让目标值等于输入值,比如 .自编码神经网络尝试学习一个 的函数.换句话说,它尝试逼近一个恒等函数,从而使得输出 接近于输入 .当我们为自编码神经网络加入某些限制,比如给隐藏神经元加入稀疏性限制,那么自编码神经网络即使在隐藏神经元数量较多的情况下仍然可以发现输入数据中一些有趣的结构.稀疏性可以被简单地解释如下.如果当神经…
最近开始看Deep Learning,随手记点,方便以后查看. 主要参考资料是Stanford 教授 Andrew Ng 的 Deep Learning 教程讲义:http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial.这个讲义已经有人翻译了(赞一个),可以参见邓侃的新浪博客http://blog.sina.com.cn/s/blog_46d0a3930101h6nf.html.另外,博客园里有一个前辈关于讲义中练习的一系列文…
目前为止,我们已经讨论了神经网络在有监督学习中的应用.在有监督学习中,训练样本是有类别标签的.现在假设我们只有一个没有带类别标签的训练样本集合  ,其中  .自编码神经网络是一种无监督学习算法,它使用了反向传播算法,并让目标值等于输入值,比如  .下图是一个自编码神经网络的示例. 自编码神经网络尝试学习一个  的函数.换句话说,它尝试逼近一个恒等函数,从而使得输出  接近于输入  .恒等函数虽然看上去不太有学习的意义,但是当我们为自编码神经网络加入某些限制,比如限定隐藏神经元的数量,我们就可以从…
sparse autoencoder的一个实例练习,这个例子所要实现的内容大概如下:从给定的很多张自然图片中截取出大小为8*8的小patches图片共10000张,现在需要用sparse autoencoder的方法训练出一个隐含层网络所学习到的特征.该网络共有3层,输入层是64个节点,隐含层是25个节点,输出层当然也是64个节点了. main函数,  分五步走,每个函数的实现细节在下边都列出了. %%===============================================…
训练完(稀疏)自编码器,我们还想把这自编码器学习到的函数可视化出来,好弄明白它到底学到了什么.我们以在10×10图像(即n=100)上训练自编码器为例.在该自编码器中,每个隐藏单元i对如下关于输入的函数进行计算: 我们将要可视化的函数,就是上面这个以2D图像为输入,并由隐藏单元i计算出来的函数.它是依赖于参数的(暂时忽略偏置项bi).需要注意的是,可看作输入的非线性特征.不过还有个问题:什么样的输入图像x可以让可让得到最大程度的激励?(通俗一点说,隐藏单元要找个什么样的特征?).这里我们必须给x…
Exercise:Sparse Autoencoder 习题的链接:Exercise:Sparse Autoencoder 注意点: 1.训练样本像素值需要归一化. 因为输出层的激活函数是logistic函数,值域(0,1), 如果训练样本每个像素点没有进行归一化,那将无法进行自编码. 2.训练阶段,向量化实现比for循环实现快十倍. 3.最后产生的图片阵列是将W1权值矩阵的转置,每一列作为一张图片. 第i列其实就是最大可能激活第i个隐藏节点的图片xi,再乘以常数因子C(其中C就是W1第i行元素…
1. AutoEncoder AutoEncoder是一种特殊的三层神经网络, 其输出等于输入:\(y^{(i)}=x^{(i)}\), 如下图所示: 亦即AutoEncoder想学到的函数为\(f_{W,b} \approx x\), 来使得输出\(\hat{x}\)比较接近x. 乍看上去学到的这种函数很平凡, 没啥用处, 实际上, 如果我们限制一下AutoEncoder的隐藏单元的个数小于输入特征的个数, 便可以学到数据的很多有趣的结构. 如果特征之间存在一定的相关性, 则AutoEncod…
自动编码机更像是一个识别网络,只是简单重构了输入.而重点应是在像素级重构图像,施加的唯一约束是隐藏层单元的数量. 有趣的是,像素级重构并不能保证网络将从数据集中学习抽象特征,但是可以通过添加更多的约束确保网络从数据集中学习抽象特征. 稀疏自编码器(又称稀疏自动编码机)中,重构误差中添加了一个稀疏惩罚,用来限定任何时刻的隐藏层中并不是所有单元都被激活.如果 m 是输入模式的总数,那么可以定义一个参数 ρ_hat,用来表示每个隐藏层单元的行为(平均激活多少次).基本的想法是让约束值 ρ_hat 等于…
摘要: 一个新的系列,来自于斯坦福德深度学习在线课程:http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial.本文梳理了该教程第一部分的内容,主要包括人工神经网络入门.反向传递算法.梯度检验与高级优化 和 自编码算法与稀疏性等要点.最后以课程作业作为总结和练习. 前言 斯坦福深度学习在线课程是 Andrew Ng 编制的,该教程以深度学习中的重要概念为线索,基本勾勒出了深度学习的框架.为了简明扼要,该教程几乎省略了数学推导和证…
UFLDL即(unsupervised feature learning & deep learning).这是斯坦福网站上的一篇经典教程.顾名思义,你将在这篇这篇文章中学习到无监督特征学习和深度学习的主要观点. UFLDL全文出处在这:http://ufldl.stanford.edu/wiki/index.php/UFLDL%E6%95%99%E7%A8%8B,本文为本人原创,参考了UFLDL的教程,是我自己个人对于这一系列教程的理解以及自己的实验结果.非盈利性质网站转载请在文章开头处著名本…
1.autoencoder autoencoder的目标是通过学习函数,获得其隐藏层作为学习到的新特征. 从L1到L2的过程成为解构,从L2到L3的过程称为重构. 每一层的输出使用sigmoid方法,因为其输出介于0和1之间,所以需要对输入进行正规化 使用差的平方作为损失函数 2.sparse spare的含义是,要求隐藏层每次只有少数的神经元被激活: 隐藏层的输出a,a接近于0,称为未激活 a接近1,成为激活 使用如下方法衡量: 每个隐藏层的神经元有p的概率为激活,1-p的概率未激活(p一般取…
Gradient checking and advanced optimization In this section, we describe a method for numerically checking the derivatives computed by your code to make sure that your implementation is correct. Carrying out the derivative checking procedure describe…
经典超分辨率重建论文,基于稀疏表示.下面首先介绍稀疏表示,然后介绍论文的基本思想和算法优化过程,最后使用python进行实验. 稀疏表示 稀疏表示是指,使用过完备字典中少量向量的线性组合来表示某个元素.过完备字典是一个列数大于行数的行满秩矩阵,也就是说,它的列向量有无数种线性组合来表达列向量空间中的任意点.由于它的列数通常远大于行数,可以使用占比很小的列向量来表示特定的向量,我们称这种表示为稀疏表示. 那么如何获得这个字典呢?它在特定的任务下有特定的取值.和炼丹类似,我们先要用大量数据来训练这个…
一.源代码下载 代码最初来源于Github:https://github.com/vijayvee/Recursive-neural-networks-TensorFlow,代码介绍如下:“This repository contains the implementation of a single hidden layer Recursive Neural Network.Implemented in python using TensorFlow. Used the trained mode…
Neural Networks We will use the following diagram to denote a single neuron: This "neuron" is a computational unit that takes as input x1,x2,x3 (and a +1 intercept term), and outputs , where is called the activation function. In these notes, we…
神经网络模型 简单的神经网络 前向传播 代价函数 对于单个例子 .其代价函数为: 给定一个包括m个例子的数据集,我们能够定义总体代价函数为: 以上公式中的第一项  是一个均方差项. 第二项是一个规则化项(也叫权重衰减项).其目的是减小权重的幅度.防止过度拟合. 反向传播算法 反向传播算法,它是计算偏导数的一种有效方法. 批量梯度下降法 梯度检验 给定一个被觉得能计算 的函数,我们能够用以下的数值检验公式 计算两端是否一样来检验函数是否正确. 自编码神经网络 整体代价函数…
import os import torch import torch.nn as nn import torch.nn.functional as F import torchvision from torchvision import transforms from torchvision.utils import save_image # 配置GPU或CPU设置 device = torch.device('cuda' if torch.cuda.is_available() else '…
1541:[例 1]数列区间最大值 时间限制: 1000 ms         内存限制: 524288 KB提交数: 600     通过数: 207 [题目描述] 输入一串数字,给你 MM 个询问,每次询问就给你两个数字 X,YX,Y,要求你说出 XX 到 YY 这段区间内的最大数. [输入] 第一行两个整数 N,MN,M 表示数字的个数和要询问的次数: 接下来一行为 NN 个数: 接下来 MM 行,每行都有两个整数 X,YX,Y. [输出] 输出共 MM 行,每行输出一个数. [输入样例]…
向量化编程实现 Vectorized implementation 一向量化编程 Vectorization 1.1 基本术语 向量化 vectorization 1.2 向量化编程(Vectorization) 向量化编程是提高算法速度的一种有效方法.为了提升特定数值运算操作(如矩阵相乘.矩阵相加.矩阵-向量乘法等)的速度,数值计算和并行计算的研究人员已经努力了几十年.矢量化编程的思想就是尽量使用这些被高度优化的数值运算操作来实现我们的学习算法. 代码中尽可能避免显式的for循环. 刚开始编写…
原文地址:https://blog.csdn.net/marsjhao/article/details/73480859 一.什么是自编码器(Autoencoder) 自动编码器是一种数据的压缩算法,其中数据的压缩和解压缩函数是数据相关的.有损的.从样本中自动学习的.在大部分提到自动编码器的场合,压缩和解压缩的函数是通过神经网络实现的.1)自动编码器是数据相关的(data-specific 或 data-dependent),这意味着自动编码器只能压缩那些与训练数据类似的数据.比如,使用人脸训练…
目前为止,我们已经讨论了神经网络在有监督学习中的应用.在有监督学习中,训练样本时有类别标签的.现在假设我们只有一个没带类别标签的训练样本集合  ,其中  .自编码神经网络是一种无监督学习算法,它使用了反向传播算法,并让目标值等于输入值,比如  .下图是一个自编码神经网络的示例. 自编码神经网络尝试学习一个 的函数.换句话说,它尝试逼近一个恒等函数,从而使得  接近于输入  .恒等函数虽然看上去不太有学习的意义,但是当我们为自编码神经网络加入某些限制,比如限定隐藏神经元的数量,我们就可以从输入数据…
1.什么是稀疏表示: 用较少的基本信号的线性组合来表达大部分或者全部的原始信号. 其中,这些基本信号被称作原子,是从过完备字典中选出来的:而过完备字典则是由个数超过信号维数的原子聚集而来的.可见,任一信号在不同的原子组下有不同的稀疏表示. 假设我们用一个M*N的矩阵表示数据集X,每一行代表一个样本,每一列代表样本的一个属性,一般而言,该矩阵是稠密的,即大多数元素不为0. 稀疏表示的含义是,寻找一个系数矩阵A(K*N)以及一个字典矩阵B(M*K),使得B*A尽可能的还原X,且A尽可能的稀疏.A便是…
对于加深网络层数带来的问题,(gradient diffuse  局部最优等)可以使用逐层预训练(pre-training)的方法来避免 Stack-Autoencoder是一种逐层贪婪(Greedy layer-wise training)的训练方法,逐层贪婪的主要思路是每次只训练网络中的一层,即首先训练一个只含一个隐藏层的网络,仅当这层网络训练结束之后才开始训练一个有两个隐藏层的网络,以此类推.在每一步中,把已经训练好的前  层固定,然后增加第  层(也就是将已经训练好的前  的输出作为输入…
第0步:初始化一些参数和常数   第1步:利用训练样本集训练第一个稀疏编码器   第2步:利用训练样本集训练第二个稀疏编码器   第3步:利用第二个稀疏编码器提取到的特征训练softmax回归模型   第4步:利用误差反向传播进行微调   第5步:利用测试样本集对得到的分类器进行精度测试 下面将程序实现过程中的关键代码post出,欢迎各位网友指点! stackedAEExercise.m clc clear close all addpath ../common/ addpath ../comm…
对于加深网络层数带来的问题,(gradient diffuse  局部最优等)可以使用逐层预训练(pre-training)的方法来避免 Stack-Autoencoder是一种逐层贪婪(Greedy layer-wise training)的训练方法,逐层贪婪的主要思路是每次只训练网络中的一层,即首先训练一个只含一个隐藏层的网络,仅当这层网络训练结束之后才开始训练一个有两个隐藏层的网络,以此类推.在每一步中,把已经训练好的前  层固定,然后增加第  层(也就是将已经训练好的前  的输出作为输入…