【bzoj4033】HAOI2015树上染色】的更多相关文章

BZOJ4033 HAOI2015 树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间距离的和的收益. 问收益最大值是多少. Input 第一行两个整数N,K. 接下来N-1行每行三个正整数fr,to,dis,表示该树中存在一条长度为dis的边(fr,to). 输入保证所有点之间是联通的. N<=2000,0<=K<…
4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2437  Solved: 1034[Submit][Status][Discuss] Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间距离的和的收益. 问收益最大值是多少. Input 第一…
4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3461  Solved: 1473[Submit][Status][Discuss] Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间距离的和的收益. 问收益最大值是多少. Input 第一…
树上染色 bzoj-4033 HAOI-2015 题目大意:给定一棵n个点的树,让你在其中选出k个作为黑点,其余的是白点,收益为任意两个同色点之间距离的和.求最大收益. 注释:$1\le n\le 2000$ 想法:我们看到了数据范围...一般树上问题这个数据范围一般就是背包或者数据结构,这题我们考虑树上背包. 我们考虑枚举每一棵子树选取一些黑点的贡献.但是这样选取是有后效性的,因为内部点的选取可能在外面选取同样的点产生不一样的效果,所以我们尝试把后效性移除. 具体地:我们可以将边权下传到点权,…
bzoj4033,懒得复制,戳我戳我 Solution: 定义状态\(dp[i][j]\)表示\(i\)号节点为根节点的子树里面有\(j\)个黑色节点时最大的贡献值 然后我们要知道的就是子节点到根节点这条边会计算次数就是:子树中白色节点数\(*\)子树外白色节点数\(+\)子树中黑色节点数\(*\)子树外黑色节点数 \[dp[u][j+k]=max(dp[u][j+k],\] \[dp[u][j]+dp[v][k]+(1ll)*k*(m-k)*dis[v]+(1ll)*(siz[v]-k)*(n…
洛谷P3177 bzoj4033 根本不会做... 上网查了题解,发现只要在状态定义的时候就考虑每一条边全局的贡献就好了? 考虑边的贡献和修改状态定义我都想到了,然而并不能想到要结合起来 ans[i][j]表示i子树中选j个黑色节点,最大的贡献和 容易知道:每一条边的贡献为 长度*(边一侧的白点数*边另一侧的白点数+边一侧的黑点数*边另一侧的黑点数) 可以发现,如果已经确定一棵子树中选多少个黑点,那么这棵子树的根到其父亲的连边的贡献可以直接确定 考虑向一棵树的根节点(u)下再加入一棵子树(v)时…
仔细思考后会发现和51nod1677 treecnt有异曲同工之妙 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间距离的和的收益. 问收益最大值是多少. Input 第一行两个整数N,K. 接下来N-1行每行三个正整数fr,to,dis,表示该树中存在一条长度为dis的边(fr,to). 输入保证所有点之间是联通的. N<=2…
题目传送门 题目描述 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间距离的和的收益.问收益最大值是多少. 输入格式 第一行两个整数N,K.接下来N-1行每行三个正整数fr,to,dis,表示该树中存在一条长度为dis的边(fr,to).输入保证所有点之间是联通的.N<=2000,0<=K<=N. 输出格式 输出一个正整数,表示收益的最大值. 样…
题目 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间距离的和的收益. 问收益最大值是多少. 输入格式 第一行两个整数N,K. 接下来N-1行每行三个正整数fr,to,dis,表示该树中存在一条长度为dis的边(fr,to). 输入保证所有点之间是联通的. N<=2000,0<=K<=N 输出格式 输出一个正整数,表示收益的最大值. 输入样例…
本来是考虑, $ f[x][i][0/1] $ 表示 $ x $ 子树中有$i$个黑点,且 $ x $ 是白点/黑点.但是这里的答案是要统计不同的子树的贡献的.所以就gg了. 看了题解. 应该是要设$f[x][i]$表示$x$子树中有$i$个黑点,对答案的贡献. 转移的时候,就可以单独计算出$x->y$(y是x的儿子)这条边的贡献. 贡献怎么算呢?就是统计一下$y$内有多少黑(白)点.$y$外有多少黑(白)点,算一下有多少对,最后乘上$x->y$的边权. #include<iostrea…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4033 树形DP,状态中加入 x 与父亲之间的边的贡献: 边权竟然是long long... 代码如下: #include<iostream> #include<cstdio> #include<cstring> using namespace std; ; int n,m,head[maxn],ct,siz[maxn]; long long f[maxn][max…
[BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间距离的和的收益.问收益最大值是多少. Input 第一行两个整数N,K. 接下来N-1行每行三个正整数fr,to,dis,表示该树中存在一条长度为dis的边(fr,to). 输入保证所有点之间是联通的. N<=2000,0<=K&l…
4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; typedef long long ll; const in…
BZOJ_4033_[HAOI2015]树上染色_树形DP Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间距离的和的收益. 问收益最大值是多少. Input 第一行两个整数N,K. 接下来N-1行每行三个正整数fr,to,dis,表示该树中存在一条长度为dis的边(fr,to). 输入保证所有点之间是联通的. N<=2000,…
4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3188  Solved: 1366[Submit][Status][Discuss] Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间距离的和的收益. 问收益最大值是多少. Input 第一…
[HAOI2015]树上染色 题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间的距离的和的受益.问受益最大值是多少. 输入输出格式 输入格式: 第一行包含两个整数 N, K .接下来 N-1 行每行三个正整数 fr, to, dis , 表示该树中存在一条长度为 dis 的边 (fr, to) .输入保证所有点之间是联通的…
[HAOI2015]树上染色 这种要算点对之间路径的长度和的题,难以统计每个点的贡献.这个时候一般考虑算每一条边贡献了哪些点对. 知道这个套路以后,那么这题就很好做了. 状态:设\(dp[u][i]\)表示u节点(子树里有i个黑点)的子树的边的贡献的和. 转移:转移就很好想了,知道v内的黑点个数j,知道v内的白点数目\(sz[v]-j\),知道总共的黑点数目\(m\),知道总共的白点数目\((n-m)\),知道边权w,那么转移方程显然就是: \[ dp[u][i]=max{dp[v][j]+w*…
#4033. [HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间距离的和的收益. 问收益最大值是多少.   Input 第一行两个整数N,K. 接下来N-1行每行三个正整数fr,to,dis,表示该树中存在一条长度为dis的边(fr,to). 输入保证所有点之间是联通的. N<=2000,0<=K&…
BZOJ 4033: [HAOI2015]树上染色题解(树形dp) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327400 原题地址: BZOJ 4033: [HAOI2015]树上染色题解 洛谷 P3177 [HAOI2015]树上染色 应该各大\(oj\)都有...可以多倍经验... 一眼树形\(dp\)是吧 因为要选出\(K\)个黑点,所以知道子树内有多少个黑点,就知道子树外有多少个黑点 那么设dp[now][j]表示在\(now\)的子树内…
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \(k\) 个点,将其染成黑色,并将其他 的 \(n−k\) 个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间的距离的和的受益.问受益最大值是多少. 输入格式 第一行包含两个整数 \(n,k\). 第二到 \(n\) 行每行三个正整数 \(fr,to,dis\)表示该树中存在一条…
[题目]#2124. 「HAOI2015」树上染色 [题意]给定n个点的带边权树,要求将k个点染成黑色,使得 [ 黑点的两两距离和+白点的两两距离和 ] 最大.n<=2000. [算法]树上背包 [题解]设f[i][j]表示子树i中有j个黑点对答案的贡献(包括点 i 到父亲的边 p ),由于边p的贡献只和 j 有关,所以最后再统计. 所以做树上背包即可,注意这题特殊在f[x][0]≠0,所以初始f[x][k]+=f[y][0],然后不要把0作为物品. 最后统计边p的贡献:w[p] *(子树内黑点…
树上染色 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间距离的和的收益. 问收益最大值是多少.   Input 第一行两个整数N,K. 接下来N-1行每行三个正整数fr,to,dis,表示该树中存在一条长度为dis的边(fr,to). 输入保证所有点之间是联通的. N<=2000,0<=K<=N   Output 输出一个正整数,表示收益的最…
https://www.lydsy.com/JudgeOnline/problem.php?id=4033 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间距离的和的收益. 问收益最大值是多少. emmm……人傻自然 $~O(nk)->O(nk^2)~$ 参考:https://www.luogu.org/blog/mlystdcall/solution-…
BZOJ原题链接 洛谷原题链接 很明显的树形\(DP\). 因为记录每个点的贡献很难,所以我们可以统计每条边的贡献. 对于每一条边,设边一侧的黑点有\(B_x\)个,白点有\(W_x\),另一侧黑点有\(B_y\),白点有\(W_y\),边权为\(w\),那么这条边的贡献就是\((W_x\times W_y + B_x\times B_y)\times w\). 然后设计\(DP\)状态,定义\(f[x][v]\),表示以\(x\)为根的子树里分配\(v\)个黑点的最大贡献. 初始化为\(-1\…
树形dp. #include<bits/stdc++.h> #define N 2010 using namespace std; typedef long long ll; ,head[N]; ]; inline void addedge(int u,int v,int w){ G[tot].u=u;G[tot].v=v;G[tot].w=w;G[tot].next=head[u];head[u]=tot++; G[tot].u=v;G[tot].v=u;G[tot].w=w;G[tot].…
点此看题面 大致题意: 给你一棵点数为N的带权树,要你在这棵树中选择K个点染成黑色,并将其他的N-K个点染成白色.要求你求出黑点两两之间的距离加上白点两两之间距离的和的最大值. 树形\(DP\) 这道题应该是一道比较显然的树形\(DP\),我们可以用f[x][i]来表示当前节点为x时有i个黑色节点时能取得的最大值.则转移方程应为(伪代码) f[x][i]=max(f[x][i],f[x][i-j]+f[x的一个子节点][j]+j*(m-j)*x与这个子节点之间边的边权+1LL*(Size[x的子…
Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间距离的和的收益. 问收益最大值是多少.   Input 第一行两个整数N,K. 接下来N-1行每行三个正整数fr,to,dis,表示该树中存在一条长度为dis的边(fr,to). 输入保证所有点之间是联通的. N<=2000,0<=K<=N   Output 输出一个正整数…
有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间的距离的和的受益.问受益最大值是多少. Solution 比较经典的树形背包问题. 如果只对点进行分析,情况会变得十分麻烦,不放考虑每条变的贡献,每条边会产生两边黑点数的乘积加上两边白点数的乘积. 这样的话我们直接跑背包就可以了,标准的树形背包是n^3的,但是这道题每颗字数背包体积有上…
Description: 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间的距离的和的受益.问受益最大值是多少. Hint: \(n \le 2^3\) Solution: 很好的树型dp题 设状态\(f[i][j]\)表示i点子树染j个黑点的最大距离和 然而无法转移 换一种角度,考虑每条边对答案的贡献 设一条边的下面一端u的子树中…
一道有机结合了计数和贪心这一DP两大考点的神仙题,不得不说做法是很玄妙. 首先我们很容易想到DP,设\(f_{i,j}\)表示在以\(i\)为根节点的子树中选\(j\)个黑色节点的最大收益值. 然后我们考虑那种暴力转移就是那种看上去是\(O(n^3)\)实际经严格证明后时\(O(n^2)\)的DP 然后推推推推推推,一个小时过去还是一个屁 这个时候我们不禁质疑,这个鬼状态不会是错的吧. 没错,它就是错的,因为这样对于你子树上面的黑点节点之间的收益你都一无所知 然后我们联想到另外一道树上计数的题目…