Kruskal算法-最小生成树】的更多相关文章

2017-07-26  10:32:07 writer:pprp Kruskal算法是根据边的加权值以递增的方式,一次找出加权值最低的边来建最小生成树:并且每次添加的边不能造成生成树有回路,直到找到N-1个边为止: 适用范围:边集比较少的时候,可以考虑用这个方法: 做法:将图形中所有的边的权值,递增排序(快速排序),按从小到大,依次将邻接边加入到生成树中,加入的生成树不能有回路,直到N-1个边: 还用到了并查集: 代码如下: #include <iostream> using namespac…
Arctic POJ-2349 这题是最小生成树的变形题目.题目的意思是已经有s个卫星频道,这几个卫星频道可以构成一部分的网络,而且不用费用,剩下的需要靠d的卫星接收器.题目要求的就是最小生成树中,最大的边的长度. 题目中的传入kruskal函数里面的sn表示还需要连接的顶点个数,因为剩下的可以使用卫星频道来连接. 剩下的就是kruskal的问题了,这里通过当前最大边来返回答案. #include<iostream> #include<cstdio> #include<alg…
Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小.该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现:并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现:1959年,艾兹格·迪科斯彻再次发现了该算法.因此,在某些场…
最近在复习数据结构,所以想起了之前做的一个最小生成树算法.用Kruskal算法实现的,结合堆排序可以复习回顾数据结构.现在写出来与大家分享. 最小生成树算法思想:书上说的是在一给定的无向图G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即),而 w(u, v) 代表此边的权重,若存在 T 为 E 的子集(即)且为无循环图,使得的 w(T) 最小,则此 T 为 G 的最小生成树.说白了其实就是在含有 n 个顶点的连通网中选择 n-1 条边,构成一棵极小连通子图,并使该连…
kruskal和prim都是解决最小生成树问题,都是选取最小边,但kruskal是通过对所有边按从小到大的顺序排过一次序之后,配合并查集实现的.我们取出一条边,判断如果它的始点和终点属于同一棵树,那么跳过,否则合并他们分别所在的树. #include<iostream>#include<algorithm>using namespace std; struct eg{ int s,t,c;};int v,e;int ans=0;eg E[1000];int p[1000];bool…
Kruskal算法: 不断地选择未被选中的边中权重最轻且不会形成环的一条. 简单的理解: 不停地循环,每一次都寻找两个顶点,这两个顶点不在同一个真子集里,且边上的权值最小. 把找到的这两个顶点联合起来. 初始时,每个顶点各自属于自己的子集合,共n个子集合. 每一步操作,都会将两个子集合融合成一个,进而减少一个子集合. 结束时,所有的顶点都在同一个子集合里,这个子集合就是最小生成树. 例子: 伪代码: Prim算法: G=(V,E),S是V的真子集,如果u在S中,v在V-S中,且(u,v)是图的一…
最小生成树在一个图中可以有多个,但是如果一个图中边的权值互不相同的话,那么最小生成树只可能存在一个,用反证法很容易就证明出来了. 当然最小生成树也是一个图中包含所有节点的权值和最低的子图. 在一个图中权值最小的那个边一定在最小生成树中,如果一个图包含环,环中权值最大的边一定不在最小生成树中,还有就是连接图的任意两个划分的边中权值最短的那一条一定在最小生成树中. 下面介绍两个算法. Prim算法 Prim算法就是以任意一个点为源点,将所有点分为两组,一组是已经在最小生成树上的点,另一组是还未在最小…
matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include <limits.h> #include "aqueue.h" #define MAX_VALUE INT_MAX #define MAX_NUM 100 typedef char node_type; typedef struct matrix { node_type vertex[M…
最小支撑树树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind 最小支撑树树 前几节中介绍的算法都是针对无权图的,本节将介绍带权图的最小支撑树(minimum spanning tree)算法.给定一个无向图G,并且它的每条边均权值,则MST是一个包括G的所有顶点及边的子集的图,这个子集保证图是连通的,并且子集中所有边的权值之和为所有子集中最小的. 本节中介绍三种算法求解图的最小生成树:Prim算法.Kruskal算法和Boruvk…
Kruskal算法就是把图中的所有边权值排序,然后从最小的边权值开始查找,连接图中的点,当该边的权值较小,但是连接在途中后会形成回路时就舍弃该边,寻找下一边,以此类推,假设有n个点,则只需要查找n-1条边即可. #include<stdio.h> #include<iostream> #include<algorithm> #include<string.h> using namespace std; ; int v,l;///v代表点的个数,l代表边的个数…