在各种深度学习框架中,我们最常用的损失函数就是交叉熵,熵是用来描述一个系统的混乱程度,通过交叉熵我们就能够确定预测数据与真实数据的相近程度.交叉熵越小,表示数据越接近真实样本. 1 分类任务的损失计算 1.1 单标签分类 二分类 单标签任务,顾名思义,每个样本只能有一个标签,比如ImageNet图像分类任务,或者MNIST手写数字识别数据集,每张图片只能有一个固定的标签.二分类是多分类任务中的一个特例,因为二分类只有正样本和负样本,并且两者的概率之和为1,所以不需要预测一个向量,只需要输出一个概…