1. 整体架构 GraphX 的整体架构(如图 1所示)可以分为三部分. 图 1  GraphX 架构 存储和原语层: Graph 类是图计算的核心类.内部含有 VertexRDD. EdgeRDD 和RDD[EdgeTriplet] 引用. GraphImpl 是 Graph 类的子类,实现了图操作.‰ 接口层:在底层 RDD 的基础之上实现了 Pregel 模型, BSP 模式的计算接口.‰ 算法层:基于 Pregel 接口实现了常用的图算法.包括: PageRank. SVDPlusPlu…
一.图构建器 GraphX提供了几种从RDD或磁盘上的顶点和边的集合构建图形的方法.默认情况下,没有图构建器会重新划分图的边:相反,边保留在默认分区中.Graph.groupEdges要求对图进行重新分区,因为它假定相同的边将在同一分区上放置,因此在调用Graph.partitionBy之前必须要调用groupEdges. 源码如下: package org.apache.spark.graphx import org.apache.spark.SparkContext import org.a…
maya网格数据结构允许"非流形"的存在,于是,这种数据结构无法按顺序给出一个点的邻接顶点. 于是,MItMeshVertex::getConnectedVertices函数返回的邻接顶点索引并不是按顺序的. 于是把之前计算拉普拉斯矩阵的代码改了过来. 来自为知笔记(Wiz)…
第1章 Spark GraphX 概述1.1 什么是 Spark GraphX1.2 弹性分布式属性图1.3 运行图计算程序第2章 Spark GraphX 解析2.1 存储模式2.1.1 图存储模式2.1.2 GraphX 存储模式2.2 vertices.edges 以及 triplets2.2.1 vertices2.2.2 edges2.2.3 triplets2.3 图的构建2.3.1 构建图的方法2.3.2 构建图的过程2.4 计算模式2.4.1 BSP 计算模式2.4.2 图操作一…
2.1 存储模式 2.1.1 图存储模式 巨型图的存储总体上有边分割和点分割两种存储方式 1)边分割(Edge-Cut):每个顶点都存储一次,但有的边会被打断分到两台机器上.这样做的好处是节省存储空间:坏处是对图进行基于边的计算时,对于一条两个顶点被分到不同机器上的边来说,要跨机器通信传输数据,内网通信流量大 2)点分割(Vertex-Cut):每条边只存储一次,都只会出现在一台机器上.邻居多的点会被复制到多台机器上,增加了存储开销,同时会引发数据同步问题.好处是可以大幅减少内网通信量 虽然两种…
1.1 什么是Spark GraphX Spark GraphX是一个分布式图处理框架,它是基于Spark平台提供对图计算和图挖掘简洁易用的而丰富的接口,极大的方便了对分布式图处理的需求.那么什么是图,都计算些什么?众所周知社交网络中人与人之间有很多关系链,例如Twitter.Facebook.微博和微信等,数据中出现网状结构关系都需要图计算 GraphX是一个新的Spark API,它用于图和分布式图(graph-parallel)的计算.GraphX通过引入弹性分布式属性图(Resilien…
  第1章 Spark GraphX 概述 1.1 什么是 Spark GraphX   Spark GraphX 是一个分布式图处理框架,它是基于 Spark 平台提供对图计算和图挖掘简洁易用的而丰富的接口,极大的方便了对分布式图处理的需求.那么什么是图,都计算些什么?众所周知社交网络中人与人之间有很多关系链,例如 Twitter.Facebook.微博和微信等,数据中出现网状结构关系都需要图计算.  GraphX 是一个新的 Spark API,它用于图和分布式图(graph-paralle…
Spark系列面试题 Spark面试题(一) Spark面试题(二) Spark面试题(三) Spark面试题(四) Spark面试题(五)--数据倾斜调优 Spark面试题(六)--Spark资源调优 Spark面试题(七)--Spark程序开发调优 Spark面试题(八)--Spark的Shuffle配置调优 GraphX 是新的图形和图像并行计算的Spark API.从整理上看,GraphX 通过引入 弹性分布式属性图(Resilient Distributed Property Grap…
快刀初试:Spark GraphX在淘宝的实践 作者:明风 (本文由团队中梧苇和我一起撰写,并由团队中的林岳,岩岫,世仪等多人Review,发表于程序员的8月刊,由于篇幅原因,略作删减,本文为完整版) 对于网络科学而言,世间万物都可以抽象成点,而事物之间的关系都可以抽象成边,并根据不同的应用场景,生成不同的网络,因此整个世界都可以用一个巨大的复杂网络来代表.有关复杂网络和图算法的研究,在最近的十几年取得了巨大的进展,并在多个领域有重要的应用. 作为最大的电商平台,淘宝上数亿买家和卖家,每天产生数…
GraphX是Spark用于图形并行计算的新组件.在较高的层次上,GraphX通过引入一个新的Graph抽象来扩展Spark RDD:一个定向的多图,其属性附加到每个定点和边.为了支持图计算,GraphX公开了一组基本的操作符(子图,joinVertices和aggregateMessages),以及上述优化的变体API. 1.导入 2.属性图 GraphX的属性曲线图是一个有向多重图与连接到每个顶点边缘的用户定义对象.其可能有多个平行边共享相同的源和目标顶点.支持平行边缘的能力简化了在相同顶点…