BZOJ 3027 Sweets 生成函数,容斥】的更多相关文章

Description John得到了n罐糖果.不同的糖果罐,糖果的种类不同(即同一个糖果罐里的糖果种类是相同的,不同的糖果罐里的糖果的种类是不同的).第i个糖果罐里有 mi个糖果.John决定吃掉一些糖果,他想吃掉至少a个糖果,但不超过b个.问题是John 无法确定吃多少个糖果和每种糖果各吃几个.有多少种方法可以做这件事呢? Input 从标准输入读入每罐糖果的数量,整数a到b   John能够选择的吃掉糖果的方法数(满足以上条件) Output 把结果输出到标准输出(把答案模 2004 输出…
BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数,当前选的是\(j\)的价值和.复杂度是\(O(nA)\)的.然后忘掉这个做法吧这个做法没前途. 上面这个做法最后还要\(O(A)\)求一遍和,感觉不够优美. 直接令\(f_{i,j}\)表示选了\(i\)个数,选的最大的数\(\leq j\)的价值和.转移为:\(f_{i,j}=f_{i,j-1}+…
题面 传送门 题解 复杂度比较迷啊-- 以下以\(n\)表示颜色总数,\(m\)表示总的卡牌数 严格\(k\)对比较难算,我们考虑容斥 首先有\(i\)对就代表整个序列被分成了\(m-i\)块互不相同的部分,那么我们从被分成了多少块这个角度来考虑 设\(f_{i,j}\)表示考虑前\(i\)中颜色被分成了\(j\)块的方案(这里的\(j\)块不一定满足相邻两块颜色不同),那么转移就是 \[f_{i,j}=\sum_k f_{i-1,j-k}{a_i-1\choose k-1}{j\choose…
题面 传送门 前置芝士 矩阵树,基本容斥原理,生成函数,多项式\(\exp\) 题解 我也想哭了--orz rqy,orz shadowice 我们设\(T1,T2\)为两棵树,并定义一个权值函数\(w(T1,T2)=y^{n-|T1\cap T2|}\),其中\(|T1\cap T2|\)为两棵树共同拥有的边的数目 显然,\(w(T1,T2)\)就是两棵树在该情况下的方案个数,因为\(T1\cap T2\)后的图中每个连通块只能用同一种颜色,而\(n-|T1\cap T2|\)就是连通块个数…
题目链接: [TJOI2019]唱.跳.rap和篮球 直接求不好求,我们考虑容斥,求出至少有$i$个聚集区间的方案数$ans_{i}$,那么最终答案就是$\sum\limits_{i=0}^{n}(-1)^i\ ans_{i}$ 那么现在只需要考虑至少有$i$个聚集区间的方案数,我们枚举这$i$个区间的起始点位置,一共有$C_{n-3i}^{i}$种方案(可以看作是刚开始先将每个区间后三个位置去掉,从剩下$n-3i$个位置中选出$i$个区间起点,然后再在每个起点后面加上三个位置). 那么剩下的$…
传送门 解题思路 首先题目中有两个限制,第一个是两个集合直接必须一一映射,第二个是重新标号后,\(B\)中两点有边\(A\)中也必须有.发现限制\(2\)比较容易满足,考虑化简限制\(1\).令\(f(S)\)表示重标号后至多出现在\(S\)中的标号且满足条件\(2\)的方案数,令\(g(S)\)表示重标号后恰好出现在\(S\)中的标号满足条件\(2\)的方案数.这应该是容斥里的一个套路.那么有转移方程: \[ f(S)=\sum\limits_{T \subseteq S}g(T)\Right…
洛谷题面传送门 看到图计数的题就条件反射地认为是不可做题并点开了题解--实际上这题以我现在的水平还是有可能能独立解决的( 首先连通这个条件有点棘手,我们尝试把它去掉.考虑这题的套路,我们设 \(f_n\) 表示 \(n\) 个点的有标号 DAG 个数,\(g_n\) 表示 \(n\) 个点的有标号且弱联通的 DAG 个数,那么根据 \(\exp\) 式子的计算方式我们可以列出 \(f,g\) 生成函数之间的 exp 关系,又因为这题带标号,所以有: Trick 1. 对于有标号图连通图计数问题,…
题目链接  2017 CCPC Hangzhou Problem G 题意描述很清晰. 考虑每个家庭有且仅有$k$对近亲的方案数: $C(a, k) * C(b, k) * k!$ 那么如果在第$1$个家庭里面选出$k_{1}$对近亲,在第$2$个家庭里面选出$k_{2}$对近亲......在第$n$个家庭里面选出$k_{n}$对近亲, 剩下那些人自由组合的话,那么最后这种方案至少会有$∑k$对近亲. 说是至少,因为同一个家庭里面没被强行选择的男女还是可能被组到了一起. 那么考虑如何求至少有$k…
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 5473  Solved: 2679[Submit][Status][Discuss] Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是小X的生日,小 W 想送一个数给他作为生日礼物.当然他不能送一个小X讨厌…
题面 Description 我们讲一个悲伤的故事. 从前有一个贫穷的樵夫在河边砍柴. 这时候河里出现了一个水神,夺过了他的斧头,说: "这把斧头,是不是你的?" 樵夫一看:"是啊是啊!" 水神把斧头扔在一边,又拿起一个东西问: "这把斧头,是不是你的?" 樵夫看不清楚,但又怕真的是自己的斧头,只好又答:"是啊是啊!" 水神又把手上的东西扔在一边,拿起第三个东西问: "这把斧头,是不是你的?" 樵夫还是看不…