准确率 召回率 精确率 : 准确率->accuracy, 精确率->precision. 召回率-> recall. 三者很像,但是并不同,简单来说三者的目的对象并不相同. 大多时候我们需要将三者放到特定的任务环境中才会更加明显的感觉到三者的差异. 在介绍这些之前,我们先回顾一下我们的混淆矩阵. True Positive(真正, TP):将正类预测为正类数. True Negative(真负 , TN):将负类预测为负类数. False Positive(假正, FP):将负类预测为正…
当我们训练一个分类模型,总要有一些指标来衡量这个模型的优劣.一般可以用如题的指标来对预测数据做评估,同时对模型进行评估. 首先先理解一下混淆矩阵,混淆矩阵也称误差矩阵,是表示精度评价的一种标准格式,用n行n列的矩阵形式来表示. 准确率:分类器正确分类的样本数与总样本数之比.即预测 == 实际的,即斜对角线上的值总和 / 总样本 精确率:预测结果为类n中,其中实际为类n所占的比例 召回率:所有”正确被检索的item(TP)”占所有”应该检索到的item(TP+FN)”的比例 F1值  :精确值和召…
参考链接:https://www.cnblogs.com/Zhi-Z/p/8728168.html 具体更详细的可以查阅周志华的西瓜书第二章,写的非常详细~ 一.机器学习性能评估指标 1.准确率(Accurary) 准确率是我们最常见的评价指标,而且很容易理解,就是被分对的样本数除以所有的样本数,通常来说,正确率越高,分类器越好. 准确率确实是一个很好很直观的评价指标,但是有时候准确率高并不能代表一个算法就好.比如某个地区某天地震的预测,假设我们有一堆的特征作为地震分类的属性,类别只有两个:0:…
原文地址:http://blog.csdn.net/pkueecser/article/details/8229166 在信息检索.分类体系中,有一系列的指标,搞清楚这些指标对于评价检索和分类性能非常重要,因此最近根据网友的博客做了一个汇总. 准确率.召回率.F1 信息检索.分类.识别.翻译等领域两个最基本指标是召回率(Recall Rate)和准确率(Precision Rate),召回率也叫查全率,准确率也叫查准率,概念公式: 召回率(Recall)      =  系统检索到的相关文件 /…
下面简单列举几种常用的推荐系统评测指标: 1.准确率与召回率(Precision & Recall) 准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量.其中精度是检索出相关文档数与检索出的文档总数的比率,衡量的是检索系统的查准率:召回率是指检索出的相关文档数和文档库中所有的相关文档数的比率,衡量的是检索系统的查全率. 一般来说,Precision就是检索出来的条目(比如:文档.网页等)有多少是准确的,Recall就是所有准确的条目有多少被检索出来了. 正确率.召回…
本文发布于 2020-12-27,很可能已经过时 fashion_mnist 计算准确率.召回率.F1值 1.定义 首先需要明确几个概念: 假设某次预测结果统计为下图: 那么各个指标的计算方法为: A类的准确率:TP1/(TP1+FP5+FP9+FP13+FP17) 即预测为A的结果中,真正为A的比例 A类的召回率:TP1/(TP1+FP1+FP2+FP3+FP4) 即实际上所有为A的样例中,能预测出来多少个A(的比例) A类的F1值:(准确率*召回率*2)/(准确率+召回率) 实际上我们在训练…
Evaluation metricsa binary classifier accuracy,specificity,sensitivety.(整个分类器的准确性,正确率,错误率)表示分类正确:True Positive:本来是正样例,分类成正样例. True Negative:本来是负样例,分类成负样例. 表示分类错误:False Positive :本来是负样例,分类成正样例,通常叫误报. False Negative:本来是正样例,分类成负样例,通常叫漏报. P=TP/TP+FP R=TP…
建立模型 当使用机器学习的方法来解决问题时,比如垃圾邮件分类等,一般的步骤是这样的: 1)从一个简单的算法入手这样可以很快的实现这个算法,并且可以在交叉验证集上进行测试: 2)画学习曲线以决定是否更多的数据,更多的特征或者其他方式会有所帮助: 3)人工检查那些算法预测错误的例子(在交叉验证集上),看看能否找到一些产生错误的原因. 评估模型 首先,引入一个概念,非对称性分类.考虑癌症预测问题,y=1 代表癌症,y=0 代表没有癌症,对于一个数据集,我们建立logistic 回归模型,经过以上建模的…
建立模型 当使用机器学习的方法来解决问题时,比如垃圾邮件分类等,一般的步骤是这样的: 1)从一个简单的算法入手这样可以很快的实现这个算法,并且可以在交叉验证集上进行测试: 2)画学习曲线以决定是否更多的数据,更多的特征或者其他方式会有所帮助: 3)人工检查那些算法预测错误的例子(在交叉验证集上),看看能否找到一些产生错误的原因. 评估模型 首先,引入一个概念,非对称性分类.考虑癌症预测问题,y=1 代表癌症,y=0 代表没有癌症,对于一个数据集,我们建立logistic 回归模型,经过以上建模的…
在机器学习.推荐系统.信息检索.自然语言处理.多媒体视觉等领域,常常会用到准确率(precision).召回率(recall).F-measure.F1-score 来评价算法的准确性. 一.准确率和召回率(P&R) 以文本检索为例,先看下图 当中,黑框表示检索域,我们从中检索与目标文本相关性大的项.图中黄色部分(A+B)表示检索域中与目标文本先关性高的项,图中 A+C部分表示你的算法检索出的项.A.B.C的含义图中英文标出. 准确率: 召回率: 一般来说,准确率表示你的算法检索出来的有多少是正…