首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
对SVD奇异值分解的理解
】的更多相关文章
对SVD奇异值分解的理解
首先推荐一篇博客,奇异值分解(SVD)原理详解及推导 - CSDN博客,讲解的很清楚.这里我谈谈自己的理解,方便以后回顾. 如果把向量理解为空间中的一个元素,那么矩阵可以理解为两个空间上的映射.在线性代数中我们常见的是正交变换,这种变换不会改变向量之间的夹角,可以用坐标系的平移旋转来直观理解.但是对一般的方阵,甚至对更一般的非对称矩阵,这种变化的几何含义又该怎么理解,一直都没有搞清楚.通过奇异值分解能说明这些变化 的实际含义. 首先我们来看一般的方阵\(M(n*n)\),可以找到一对…
SVD奇异值分解的基本原理和运用
SVD奇异值分解: SVD是一种可靠的正交矩阵分解法.可以把A矩阵分解成U,∑,VT三个矩阵相乘的形式.(Svd(A)=[U*∑*VT],A不必是方阵,U,VT必定是正交阵,S是对角阵<以奇异值为对角线,其他全为0>) 用途: 信息检索(LSA:隐性语义索引,LSA:隐性语义分析),分解后的奇异值代表了文章的主题或者概念,信息检索的时候同义词,或者说同一主题下的词会映射为同一主题,这样就可以提高搜索效率 数据压缩:通过奇异值分解,选择能量较大的前N个奇异值来代替所有的数据信息,这样可以降低…
SVD奇异值分解的几何物理意义资料汇总
学习SVD奇异值分解的网上资料汇总: 1. 关于svd的一篇概念文,这篇文章也是后续几篇文章的鼻祖~ http://www.ams.org/samplings/feature-column/fcarc-svd 2.关于SVD物理意义分析比较透彻的文章 http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html 3.关于SVD的介绍性文章,用 一个简单的例子说明了SVD分解的原始过程 http://…
[机器学习]-SVD奇异值分解的基本原理和运用
SVD奇异值分解: SVD是一种可靠的正交矩阵分解法.可以把A矩阵分解成U,∑,VT三个矩阵相乘的形式.(Svd(A)=[U*∑*VT],A不必是方阵,U,VT必定是正交阵,S是对角阵<以奇异值为对角线,其他全为0>) 用途: 信息检索(LSA:隐性语义索引,LSA:隐性语义分析),分解后的奇异值代表了文章的主题或者概念,信息检索的时候同义词,或者说同一主题下的词会映射为同一主题,这样就可以提高搜索效率 数据压缩:通过奇异值分解,选择能量较大的前N个奇异值来代替所有的数据信息,这样可以降低…
『科学计算_理论』SVD奇异值分解
转载请声明出处 SVD奇异值分解概述 SVD不仅是一个数学问题,在工程应用中的很多地方都有它的身影,比如前面讲的PCA,掌握了SVD原理后再去看PCA那是相当简单的,在推荐系统方面,SVD更是名声大噪,将它应用于推荐系统的是Netflix大奖的获得者Koren,可以在Google上找到他写的文章:用SVD可以很容易得到任意矩阵的满秩分解,用满秩分解可以对数据做压缩.可以用SVD来证明对任意M*N的矩阵均存在如下分解: 这个可以应用在数据降维压缩上!在数据相关性特别大的情况下存储X和Y矩阵比存储A…
简单易学的机器学习算法—SVD奇异值分解
简单易学的机器学习算法-SVD奇异值分解 一.SVD奇异值分解的定义 假设M是一个的矩阵,如果存在一个分解: 其中的酉矩阵,的半正定对角矩阵,的共轭转置矩阵,且为的酉矩阵.这样的分解称为M的奇异值分解,对角线上的元素称为奇异值,称为左奇异矩阵,称为右奇异矩阵. 二.SVD奇异值分解与特征值分解的关系 特征值分解与SVD奇异值分解的目的都是提取一个矩阵最重要的特征.然而,特征值分解只适用于方阵,而SVD奇异值分解适用于任意的矩阵,不一定是方阵. 这里,是方阵,为单位矩阵,的特征向量,的特征…
关于奇异值分解(SVD)的理解
奇异值分解实际上是将一个矩阵,分解成为两个不同维度(行数和列数)上的正交向量集之间的映射变换,奇异值则是变换时的缩放! 例如上面的矩阵M就是一个5维映射到4维的变换矩阵,而SVD分解得到的奇异值和奇异向量则反应了这种映射关系,可以看出5维空间的各个正交方向上,缩放了多少后,映射到了4维的哪些方向.…
SVD分解的理解[转载]
http://www.bfcat.com/index.php/2012/03/svd-tutorial/ SVD分解(奇异值分解),本应是本科生就掌握的方法,然而却经常被忽视.实际上,SVD分解不但很直观,而且极其有用.SVD分解提供了一种方法将一个矩阵拆分成简单的,并且有意义的几块.它的几何解释可以看做将一个空间进行旋转,尺度拉伸,再旋转三步过程. 首先来看一个对角矩阵, 几何上, 我们将一个矩阵理解为对于点 (x, y) 从一个平面到另一个平面的映射: 下图显示了这个映射的效果: 平面被横向…
Deep Learning基础--SVD奇异值分解
矩阵奇异值的物理意义是什么?如何更好地理解奇异值分解?下面我们用图片的例子来扼要分析. 矩阵的奇异值是一个数学意义上的概念,一般是由奇异值分解(Singular Value Decomposition,简称SVD分解)得到.如果要问奇异值表示什么物理意义,那么就必须考虑在不同的实际工程应用中奇异值所对应的含义.下面先尽量避开严格的数学符号推导,直观的从一张图片出发,让我们来看看奇异值代表什么意义. 这是女神上野树里(Ueno Juri)的一张照片,像素为高度450*宽度333.&lt;i…
SVD分解的理解
对称阵A 相应的,其对应的映射也分解为三个映射.现在假设有x向量,用A将其变换到A的列空间中,那么首先由U'先对x做变换: 由于正交阵“ U的逆=U‘ ”,对于两个空间来讲,新空间下的“ 基E' 坐标 x' ,原空间E 坐标x ”有如下关系 EX=E'X' ===> X=E'X' ===> X'=(E'的逆)x ==> x向量在新的“基”下的新坐标 (E的转置)X: 1.那么对于上式UTx先可以理解为:将x用A的所有特征向量表示为: 则通过第一个变换就可以把x表示为[a1 a2 ...…