dplyr 数据操作 数据排序 (arrange)】的更多相关文章

在R中,我们在整理数据时,经常需要对数据排序,以便数据增强数据的可读性. 下面我们来看下dplyr中的,arrange函数 arrange(.data, ...) 跟filter()类似,arrange()的参数也很简单,出来data外,余下的是排序条件. 下面来看些具体的例子 library(dplyr) x<-data.frame(id=1:6, name=c("wang","zhang","li","chen",&…
前面一篇讲了cast,想必已经见识到了reshape2的强大,当然在使用cast时配合上melt这种强大的揉数据能力才能表现的淋漓尽致. 下面我们来看下,melt这个函数以及它的特点. melt(data, ..., na.rm = FALSE, value.name = "value") 从这里来看函数的参数也相对比较简单,data表示要处理的数据,na.rm表示缺失值处理办法,value.name用于重命名值所在列的名称 另外,melt函数的难点在于,不同数据结构,用到的参数可能是…
在R的使用过程中我们几乎都绕不开Hadley Wickham 开发的几个包,前面说过的ggplot2.reshape2以及即将要讲的dplyr 因为这几个包可以非常轻易的使我们从复杂的数据操作中逃离,操作过程简洁,最重要的是数据结果也异常简洁. 首先我们来了解下第一个函数filter() filter(.data, ...) 参数很简单,只有data,即要操作的数据对象,其他都是数据操作条件. 下面看一些简单的例子 library(dplyr) x<-data.frame(id=1:6, nam…
我们在做数据分析的时候,对数据进行操作也是一项极其重要的内容,这里我们同样介绍强大包reshape2,其中的几个函数,对数据进行操作cast和melt两个函数绝对少不了. 首先是cast,把长型数据转换成你想要的任何宽型数据, dcast(data, formula, fun.aggregate = NULL, ..., margins = NULL, subset = NULL, fill = NULL, drop = TRUE, value.var = guess_value(data))…
DDL数据库定义 创建数据库 1)创建一个数据库,数据库在 HDFS 上的默认存储路径是/user/hive/warehouse/*.db. hive (default)> create database db_hive; 2)避免要创建的数据库已经存在错误,增加 if not exists 判断.(标准写法) hive (default)> create database if not exists db_hive; 3)创建一个数据库,指定数据库在 HDFS 上存放的位置 hive (de…
数据操作 数据操作最重要的一步也是第一步就是收集数据,而收集数据的方式有很多种,第一种就是我们已经将数据下载到了本地,在本地通过文件进行访问,第二种就是需要到网站的API处获取数据或者网页上爬取数据,还有一种可能就是你的公司里面有自己的数据库,直接访问数据库里面的数据进行分析.需要注意的是我们不仅需要将数据收集起来还要将不同格式的数据进行整理,最后再做相应的操作. 1.数据导入.存储 访问数据是数据分析的所必须的第一步,只有访问到数据才可以对数据进行分析. 1.1.文本格式 常用pandas解析…
简介 本篇文章主要介绍了python中yaml配置文件模块的使用让其完成数据和代码的分离,宏哥觉得挺不错的,于是就义无反顾地分享给大家,也给大家做个参考.一起跟随宏哥过来看看吧. 思考问题 前面我们配置Capability时,各个参数都是在代码里面写死的,比如:desired_caps['platformVersion']='5.1.1' 一旦设备和测试的app发生改变则需要去代码里面一个个修改,要么同时根据不同设备不同App来维护多套代码,这样显示是不符合规范而且是低效的!违背了自动化的初衷,…
1.简介 在我们数据分析的实际应用中,我们可能会花费大量的时间在数据清洗上,而如果使用 R 里面自带的一些函数(base 包的 transform 等),可能会觉得力不从心,或者不是很人性化.好在我们有其他选择.这里我们介绍 dplyr 包. 首先加载包: install.packages("dplyr") library(dplyr) 单表操作函数(one table verbs)如下: filter: 保留满足条件的行 select: 使用列名选出列 arrange: 对数据的所有…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 由于业务中接触的数据量很大,于是不得不转战开始寻求数据操作的效率.于是,data.table这个包就可以很好的满足对大数据量的数据操作的需求. data.table可是比dplyr以及Python中的pandas还好用的数据处理方式. 网络上充斥的是data.table很好,很棒,性能棒之类的,但是从我实际使用来看,就得泼个水,网上博客都是拿一…
关于数据操作的另一个流行的包是dplyr,它发明了一种数据操作语法.dplyr 扩展包并没有使用构建子集函数([ ]),而是定义了一系列基础的变形函数作为数据操作模块,并且引入了一个管道操作符,利用管道操作符将这些变形函数串联起来,进而完成复杂的多步任务.如果还没有安装 dplyr,请运行以下代码以从 CRAN 中安装 :install.packages("dplyr")首先,我们重新加载产品表格,将它们重置为原始形式:library(readr)product_info <-…