数仓day04----日志预处理2】的更多相关文章

1.详细描述idmap的整个计算方案 (1)使用SparkSession对象读取用户不同类别的埋点日志,解析并抽取出相应的标识id,使用union进行合并,得到装有汇总标识id的rdd(ids) (2)利用ids分别构造图计算的vertex集合以及构造图计算的边集合(将出现次数小于2的边过滤掉) (3)将上一日的idmap映射字典解析成点.边集合,并将之与当日的点边集合进行合并 (4)利用合并后的点.边集合,我们使用spark-graphx构造图,并调用连通子图算法,得到初步结果 (5)将当日的…
1. 为什么要构建一个地理位置维表(字典) 在埋点日志中,有用户的地理位置信息,但是原始数据形式是GPS坐标,而GPS坐标在后续(地理位置维度分析)的分析中不好使用.gps坐标的匹配,不应该做这种精确匹配,应该做范围匹配,直接去匹配两个哪怕距离很近的gps坐标,很可能匹配不上,所以需要一个地理位置维表 2. 地理位置维表的设计模型(构建思想)是什么? 使用一种算法,将GPS坐标转换成一个字符串,并且当两个GPS坐标靠的越近,字符串的的吻合度会更大,这样就能通过GPS得到的字符串的吻合情况判断出该…
一.数仓分层介绍 1.实时计算与实时数仓 实时计算实时性高,但无中间结果,导致复用性差 实时数仓基于数据仓库,对数据处理规划.分层,目的是提高数据的复用性 2.电商数仓的分层 ODS:原始日志数据和业务数据 DWD:以数据对象为单位进行分流,如订单.页面访问等 DIM:维度数据 DWM:数据对象进一步加工,形成宽表&明细数据[明细宽表] DWS:根据主题对数据聚合,形成主题宽表[主题宽表] ADS:将CLickHouse中的数据根据需求进行筛选聚合 二.实时需求概览 1.离线计算与实时计算 离线…
1. 该项目适用哪些行业? 主营业务在线上进行的一些公司,比如外卖公司,各类app(比如:下厨房,头条,安居客,斗鱼,每日优鲜,淘宝网等等) 这类公司通常要针对用户的线上访问行为.消费行为.业务操作行为进行统计分析,数据挖掘!以支撑公司的业务运营,提高业务转化率,改善公司运营效果 补充概念: 数据挖掘:数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性(属于Association rule learning)信息的过程.数据挖掘通常与计算机科学有关,并通过统计.在线分析处理.情报检…
电商业务及数据结构 SKU库存量,剩余多少SPU商品聚集的最小单位,,,这类商品的抽象,提取公共的内容 订单表:周期性状态变化(order_info) id 订单编号 total_amount 订单金额 order_status 订单状态 user_id 用户id payment_way 支付方式 out_trade_no 支付流水号 create_time 创建时间 operate_time 操作时间 订单详情表:(order_detail) order_detail.order_id 是要一…
数仓分层 ODS:Operation Data Store原始数据 DWD(数据清洗/DWI) data warehouse detail数据明细详情,去除空值,脏数据,超过极限范围的明细解析具体表 DWS(宽表-用户行为,轻度聚合) data warehouse service ----->有多少个宽表?多少个字段服务层--留存-转化-GMV-复购率-日活点赞.评论.收藏; 轻度聚合对DWD ADS(APP/DAL/DF)-出报表结果 Application Data Store做分析处理同步…
本文来自腾讯云技术沙龙,本次沙龙主题为构建PB级云端数仓实践 在现代社会中,随着4G和光纤网络的普及.智能终端更清晰的摄像头和更灵敏的传感器.物联网设备入网等等而产生的数据,导致了PB级储存的需求加大. 但数据保留下来并不代表它真的具有利用价值,曾经保存的几TB的日志,要么用来做做最简单的加减乘除统计,要么就在日后出现问题了,扒出日志堆找证据.你的影视库里面可以下载储存成千上万部影片,但不代表你真的能全部看完. 如何将手里现有的数据变得更具有价值?一些营销云已经可以做到毫秒级响应做到精准投放广告…
一.OLAP简介 1. 概念 OLAP是英文是On-Line Analytical Processing的缩写,意为联机分析处理.此概念最早由关系数据库之父E.F.Codd于1993年提出.OLAP允许以一种称为多维数据集的结构,访问业务数据源经过聚合和组织整理后的数据.以此为标准,OLAP作为单独的一类技术同联机事务处理(On-Line Transaction Processing,OLTP)得以明显区分.        在计算领域,OLAP是一种快速应答多维分析查询的方法,也是商业智能的一个…
数仓建模首推书籍<数据仓库工具箱:维度建模权威指南>,本篇文章参考此书而作.文章首发公众号:五分钟学大数据,公众号中发送"维度建模"即可获取此书籍第三版电子书 先来介绍下此书,此书是基于作者 60 多年的实际业务环境而总结的经验及教训,为读者提供正式的维度设计和开发技术.面向数仓和BI设计人员,书中涉及到的内容非常广泛,围绕一系列的商业场景或案例研究进行组织.强烈建议买一本实体书研究,反复通读全书至少三遍以上,你的技术将会有质的飞跃. 数仓工具箱 因为本文是纯理论知识,密密…
在数据仓库建设中,元数据管理是非常重要的环节之一.根据Kimball的数据仓库理论,可以将元数据分为这三类: 技术元数据,如表的存储结构结构.文件的路径 业务元数据,如血缘关系.业务的归属 过程元数据,如表每天的行数.占用HDFS空间.更新时间 而基于这3类元数据"搭建"起来的元数据系统,通常又会实现如下核心功能: 1. 血缘关系 如表级别/字段级别的血缘关系,这些主要体现在我们日常的SQL和ETL任务里. 2. 大数据集群计算资源管理 针对利用不同的计算引擎如Spark/Flink/…