目录 概 主要内容 算法 finite precision arithmic 实验 Maclaurin D, Duvenaud D, Adams R P, et al. Gradient-based Hyperparameter Optimization through Reversible Learning[J]. arXiv: Machine Learning, 2015. @article{maclaurin2015gradient-based, title={Gradient-based…
课程主页:http://cs231n.stanford.edu/   Introduction to neural networks -Training Neural Network ______________________________________________________________________________________________________________________________________________________________…
DAGs with NO TEARS: Continuous Optimization for Structure Learning 目录 DAGs with NO TEARS: Continuous Optimization for Structure Learning 概 主要内容 等价条件的推导 性质的推导 求解 代码 Zheng X., Aragam B., Ravikumar P. and Xing E. DAGs with NO TEARS: Continuous Optimizat…
I. 背景介绍 1. 学习曲线(Learning Curve) 我们都知道在手工调试模型的参数的时候,我们并不会每次都等到模型迭代完后再修改超参数,而是待模型训练了一定的epoch次数后,通过观察学习曲线(learning curve, lc) 来判断是否有必要继续训练下去.那什么是学习曲线呢?主要分为两类: 1.模型性能是训练时间或者迭代次数的函数:performance=f(time) 或 performance=f(epoch).这个也就是我们常用到的方法,即横轴记录训练时间(或迭代次数)…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1610.02527v1 [cs.LG] 8 Oct 2016 坐标下降法:https://blog.csdn.net/qq_32742009/article/details/81735274 Abstract 我们为机器学习中的分布式优化引入了一个越来越相关的新设置,其中规定优化的数据在极大量的节点上分布不均匀.我们的目标是训练一个高质量的集中式模型.我们将此设置称为联邦优化.在这种情况下,通信效率至关重要,最大限度地减…
本章节主要讲怎么确定梯度下降的工作是正确的,第二是怎么选择学习率α,如下图所示: 上图显示的是梯度下降算法迭代过程中的代价函数j(θ)的值,横轴是迭代步数,纵轴是j(θ)的值 如果梯度算法正常工作,那么每一步迭代之后,那么j(θ)值应该是每一次迭代后都会相应降低,曲线的用处在于告诉你迭代到哪一步之后,已经收敛了,比如上图迭代到400次之后,j(θ)值基本就收敛了,因为迭代函数并没有随着迭代次数降低. 另外一个方法,叫自动收敛测试,也可以很好的判断梯度下降是否已经达到了收敛,比如j(θ)值在每一步…
1.核心 在每个子种群的粒子被划分为普通粒子(ordinary particles)和交流粒子(communication particles),在每次迭代过程中,不同的粒子执行不同的进化操作.普通粒子用于探索能力(exploitation),交流粒子用于开发能力(exploration). 设置一个动态的逐渐增加的控制参数p,用于实现分类操作,即将粒子分为普通粒子和交流粒子,同时,使普通粒子逐渐进化为交流粒子. 2.相关描述 将初始种群(original population)划分为M*N个粒…
How to Evaluate Machine Learning Models, Part 4: Hyperparameter Tuning In the realm of machine learning, hyperparameter tuning is a “meta” learning task. It happens to be one of my favorite subjects because it can appear like black magic, yet its sec…
由康奈尔大学运营维护着的arXiv网站,是一个在学术论文还未被出版时就将之向所有人开放的地方.这里汇聚了无数科学领域中最前沿的研究,机器学习也包括在内.它反映了学术界当前的整体趋势,我们看到,近来发布的机器学习研究有许多都与深度学习有关. Huho Larochelle博士是加拿大舍布鲁克大学(Université de Sherbrooke)机器学习教授,Twitter的研究员,有名的神经网络研究者,以及深度学习狂热爱好者.从2015年夏天开始,他就一直在撰写并发布他对于arXiv上他感兴趣的…
参考文献:Hyperband: Bandit-Based Configuration Evaluation for Hyperparameter Optimization I. 传统优化算法 机器学习中模型性能的好坏往往与超参数(如batch size,filter size等)有密切的关系.最开始为了找到一个好的超参数,通常都是靠人工试错的方式找到"最优"超参数.但是这种方式效率太慢,所以相继提出了网格搜索(Grid Search, GS) 和 随机搜索(Random Search,…