P6091-[模板]原根】的更多相关文章

/************************************* 求解x^a=b(mod c) x在[0,c-1]上解的个数模板 输入:1e9>=a,b>=1,1e9>=c>=3. 返回:调用xaeqbmodc(a,b,c),返回解的个数 复杂度: 找原根的复杂度很低,所以总的复杂度为O(c^0.5) ************************************/ typedef long long ll; #define HASH_N 100007 str…
FFT #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> #include<cmath> #include<algorithm> #define maxn 1000005 using namespace std; inline int read() { ,f=;char ch=getchar(); ; +ch-'; return x*f; }…
题目链接 大题流程: 判定是否有原根->求出最小原根->利用最小原根找出全部原根 #include<bits/stdc++.h> using namespace std; typedef long long LL; ; ]; ]; ]; int num_prime; void init() { memset(check, false, sizeof(check)); phi[]=; ; i<=maxn; i++) { if(!check[i]) { prime[num_pri…
LINK:原根 再复习一下原根 防止考场上要NTT求原根的时候不会求... 这道题要求求出n之内的所有原根 根据原根的定义. 原根指 若x对于模n的阶为phi(n)且\(1\leq x\leq n\) 那么称x为n的原根. 暴力做法枚举x 枚举phi(n)的因数 看其是否同余1. 复杂度nsqrt(n)左右. 考虑更快的做法 (去年省选骗分过样例也用了这个做法 考虑求出最小的原根g(暴力,但是很快. 对于剩下的原根都可以表示成g^k,条件为(k,phi(n))==1.(显然. 于是就做完了.值得…
自己码了一个模板...有点辛苦...常数十分大,小心使用 #include <iostream> #include <stdio.h> #include <math.h> #include <string.h> #include <time.h> #include <stdlib.h> #include <algorithm> #include <vector> using namespace std; #de…
虽然这个队,以后再也没有了,但是他的模板,是永垂不朽的![误 #include <ext/pb_ds/priority_queue.hpp> __gnu_pbds::priority_queue < int > Q; 优先队列,配对堆默认,从小到大! __gnu_pbds::priority_queue < int , greater < int > , pairing_heap_tag > Q; __gnu_pbds::priority_queue <…
基础 很久以前的多项式总结 现在的码风又变了... FFT和NTT的板子 typedef complex<double> C; const double PI=acos(-1); void FFT(C*a,R op){ for(R i=0;i<N;++i) if(i<r[i])swap(a[i],a[r[i]]); for(R i=1;i<N;i<<=1){ C wn=C(cos(PI/i),sin(PI/i)*op),w=1,t; for(R j=0;j<…
注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Robin+Pollard_Rho) 本文概要 1. 基础回顾 2. 中国剩余定理 (CRT) 及其扩展 3. 卢卡斯定理 (lucas) 及其扩展 4. 大步小步算法 (BSGS) 及其扩展 5. 原根与指标入…
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理都非常到位的总结 推荐ppl巨佬的简明易懂的总结 FFT 多项式乘法的蹊径--点值表示法 一般我们把两个长度为\(n\)的多项式乘起来,就类似于做竖式乘法,一位一位地乘再加到对应位上,是\(O(n^2)\)的 如何优化?直接看是没有思路的,只好另辟蹊径了. 多项式除了我们常用的系数表示法\(y=a_…
NTT(快速数论变换)用到的各种素数及原根: https://blog.csdn.net/hnust_xx/article/details/76572828 NTT多项式乘法模板 #include<cstdio> #include<iostream> #include<algorithm> using namespace std; typedef long long LL; ; //119*2^23+1 g=3 <<)+; ; int rev[N]; LL…