P4199-万径人踪灭【FFT】】的更多相关文章

\(\color{#0066ff}{ 题目描述 }\) \(\color{#0066ff}{输入格式}\) 一行,一个只包含a,b两种字符的字符串 \(\color{#0066ff}{输出格式}\) 一行,一个整数表示问题的答案 \(\color{#0066ff}{输入样例}\) abaabaa aaabbbaaa aaaaaaaa \(\color{#0066ff}{输出样例}\) 14 44 53 \(\color{#0066ff}{数据范围与提示}\) \(\color{#0066ff}{…
传送门 题目所求为所有的不连续回文子序列个数,可以转化为回文子序列数-回文子串数 回文子串manacher跑一跑就行了,考虑怎么求回文子序列数 我们考虑,如果$S_i$是回文子序列的对称中心,那么只要$S_{i-j}$和$S_{i+j}$相等,我们就多了一种选择 设共有$x$组相等的,那么以$S_i$为对称中心的回文子序列个数就是$2^{x+1}-1$,表示这$x$组包括对称中心选或不选,除去全都不选的都能算入答案 然而对称中心不一定在字符上可能在两个字符中间,那么这种时候回文子序列数就是$2^…
3160: 万径人踪灭 题意:求一个序列有多少不连续的回文子序列 一开始zz了直接用\(2^{r_i}-1\) 总-回文子串 后者用manacher处理 前者,考虑回文有两种对称形式(以元素/缝隙作为对称轴) f[i],i为奇数表示以缝隙对称,偶数表示以元素i>>1对称,对答案的贡献就是\(2^{f[i]}-1\) \[ f[i] = \sum_{j=1}^{i-1} [s_j = s_{i-j}] \] 就是裸卷积 因为只有a,b两个字符,可以先后令a或b=1分别求 #include <…
万径人踪灭 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1936  Solved: 1076[Submit][Status][Discuss] Description Input Output   Sample Input   Sample Output   HINT 题目大意:给定一个由'a'和'b'构成的字符串,求不连续回文子序列的个数 首先回文一定是将字符串倍增 由于求的是不连续回文子序列的个数 因此我们可以求出总回文子序列的个数,然后减…
BZOJ 3160: 万径人踪灭 题目传送门 [题目大意] 给定一个长度为n的01串,求有多少个回文子序列? 回文子序列是指从原串中找出任意个,使得构成一个回文串,并且位置也是沿某一对称轴对称. 假如x是对称轴,若 i 和 j 是对称且di=dj,i,j可以视为可行的一组.可行组数记为f[x]. \(f[x]=\sum_{i=1}^{x-1}[d[x-i]==d[x+i]]\) 以x为对称轴的答案是2^(f[x])-1. 可以观察发现将d[i]=1的A[i]标为1,A与A做一次卷积,即可得出d[…
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3160 我是一个傻叉 微笑脸 #include<bits/stdc++.h> #define inf 1000000000 #define ll long long #define N 200005 #define mod 1000000007 using namespace std; int read(){ ,f=;char ch=getchar(); ;ch=getchar();} +c…
传送门 先不考虑”不是连续的一段“这一个约束条件.可以知道:第$i$位与第$j$位相同,可以对第$\frac{i+j}{2}$位置上产生$1$的贡献(如果$i+j$为奇数表明它会对一条缝产生$1$的贡献),而每一个位置上或缝上的满足条件的字符串的个数就是$2^\text{贡献}-1$.把$\frac{1}{2}$忽略掉,也就是说:第$i$位与第$j$位相同时会在第$i+j$位产生$1$的贡献.这个是经典的生成函数+$FFT$求解的问题.具体来说,将$a,b$两个字母分开计算,以计算$a$的贡献为…
题解 每种字符跑一遍FFT,得到\(i + j = k\)时匹配的个数(要÷2,对于相同位置的最后再加上 然后算出\(2^{cnt[k]}\)的和,最后再减去用mancher匹配出的连续回文子串的个数即可 代码 #include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define pdi pair<db,int> #define mp make_pair…
Solution $ans=$回文子序列$-$回文子串的数目. 后者可以用$manacher$直接求. 前者设$f[i]$表示以$i$为中心的对称的字母对数. 那么回文子序列的数量也就是$\sum_{i=0}^{n-1}2^{f[i]-1}$ 构造两个数组$a[i],b[i]$.若第$i$位为$a$,那么$a[i]=1$,否则$b[i]=1$. 可以发现$a$数组自身卷积就是$a$字母对$f$数组的贡献,$b$数组同理. 卷下$a$,卷下$b$,对应位置求和,就是$f$数组. 因为在卷积中每对对…
嘟嘟嘟 方案:回文子序列数 - 回文子串数. 回文子串数用manacher解决就行了,关键是怎么求会问序列数. 一个比较好的\(O(n ^ 2)\)的算法:对于一个回文中心\(i\),\(O(n)\)求出以\(i\)为中心位置对称且字母相同的字母对数\(x\),则以\(i\)为回文中心的回文子序列有\(2 ^ x - 1\)个(排除空序列). 现在想一下怎么优化. 上面寻找的过程,用一个式子写出来就是这样: \[c(i) = \sum _ {j = 0} ^ {i} s[i - j] == s[…