1.7-1.12 MapReduce Wordflow】的更多相关文章

一.案例运行MapReduce Wordflow 1.准备examples [root@hadoop-senior oozie-4.0.0-cdh5.3.6]# pwd /opt/cdh-5.3.6/oozie-4.0.0-cdh5.3.6 [root@hadoop-senior oozie-4.0.0-cdh5.3.6]# tar zxf oozie-examples.tar.gz //此压缩包默认存在 [root@hadoop-senior oozie-4.0.0-cdh5.3.6]# cd…
一.MapReduce中有哪些常见算法 (1)经典之王:单词计数 这个是MapReduce的经典案例,经典的不能再经典了! (2)数据去重 "数据去重"主要是为了掌握和利用并行化思想来对数据进行有意义的筛选.统计大数据集上的数据种类个数.从网站日志中计算访问地等这些看似庞杂的任务都会涉及数据去重. (3)排序:按某个Key进行升序或降序排列 (4)TopK:对源数据中所有数据进行排序,取出前K个数据,就是TopK. 通常可以借助堆(Heap)来实现TopK问题. (5)选择:关系代数基…
1.什么是序列化 2.为什么要序列化 3.为什么不用Java的序列化 4.自定义bean对象实现序列化接口(Writable) 在企业开发中往往常用的基本序列化类型不能满足所有需求,比如在Hadoop框架内部传递一个bean对象,那么该对象就需要实现序列化接口. 具体实现bean对象序列化步骤如下7步: 1) 必须实现Writable接口 2) 反序列话时,需要反射调用无参构造方法,所以必须要有无参构造方法 3) 重写序列化方法write() 4) 重写反序列化方法readFields() 5)…
转载请在页首明显处注明作者与出处 一:说明 此为大数据系列的一些博文,有空的话会陆续更新,包含大数据的一些内容,如hadoop,spark,storm,机器学习等. 当前使用的hadoop版本为2.6.4 此为mapreducer的第二章节 这一章节中有着 计算共同好友,推荐可能认识的人 上一篇:hadoop系列三:mapreduce的使用(一) 一:说明 二:在开发工具在运行mapreducer 2.1:本地模式运行mapreducer 2.2:在开发工具中运行在yarn中 三:mapredu…
一.自定义in/outputFormat 1.需求 现有一些原始日志需要做增强解析处理,流程: 1. 从原始日志文件中读取数据 2. 根据日志中的一个URL字段到外部知识库中获取信息增强到原始日志 3. 如果成功增强,则输出到增强结果目录:如果增强失败,则抽取原始数据中URL字段输出到待爬清单目录 1374609560.11 1374609560.16 1374609560.16 1374609560.16 110 5 8615038208365 460023383869133 86964200…
错误日志: 2018-11-19 05:23:51,686 WARN [main] util.NativeCodeLoader (NativeCodeLoader.java:<clinit>(62)) - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 2018-11-19 05:23:52,595 INFO [main] Configur…
来源:http://blog.csdn.net/liuxiaochen123/article/details/8786715?utm_source=tuicool 2013-04-11 10:15 4941人阅读 评论(2) 收藏 举报   目录(?)[-] 1MapReduce理论简介 11 MapReduce编程模型 12 MapReduce处理过程 2运行WordCount程序 21 准备工作 22 运行例子 23 查看结果 3WordCount源码分析 31 特别数据类型介绍 32 旧的…
MapReduce On Yarn的配置详解和日常维护 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.MapReduce运维概述 MapReduce on YARN的运维主要是针对CPU和内存资源的运维. 二.MapReduce配置详解 1>.以下参数讲解以社区版2.6.0的参数名和默认值为准(配置文件为:hdfs-default.xml / hdfs-site.xml ) MapReduce 参考链接:http://hadoop.apache.org/docs/r2.6…
文章目录 一 MapReduce概念 1.1 为什么要MapReduce 1.2 MapReduce核心思想 1.3 MapReduce进程 1.4 MapReduce编程规范(八股文) 1.5 MapReduce程序运行流程分析 二 MapReduce理论篇 2.1 Writable序列化 2.1.1 常用数据序列化类型 2.1.2 自定义bean对象实现序列化接口 2.2 InputFormat数据切片机制 2.2.1 FileInputFormat切片机制 2.2.2 CombineTex…
自从2015年花了2个多月时间把Hadoop1.x的学习教程学习了一遍,对Hadoop这个神奇的小象有了一个初步的了解,还对每次学习的内容进行了总结,也形成了我的一个博文系列<Hadoop学习笔记系列>.其实,早在2014年Hadoop2.x版本就已经开始流行了起来,并且已经成为了现在的主流.当然,还有一些非离线计算的框架如实时计算框架Storm,近实时计算框架Spark等等.相信了解Hadoop2.x的童鞋都应该知道2.x相较于1.x版本的更新应该不是一丁半点,最显著的体现在两点: (1)H…
说到处理大数据的工具,普通的开源解决方案(尤其是Apache Hadoop)堪称中流砥柱.弗雷斯特调研公司的分析师Mike Gualtieri最近预测,在接下来几年,“100%的大公司”会采用Hadoop.Market Research的一份报告预测,到2011年,Hadoop市场会以58%的年复合增长率(CAGR)高速增长:到2020年,市场产值会超过10亿美元.IBM更是非常看好开源大数据工具,派出了3500名研究人员开发Apache Spark,这个工具是Hadoop生态系统的一部分. 这…
一.Hadoop相关工具 1. Hadoop Apache的Hadoop项目已几乎与大数据划上了等号.它不断壮大起来,已成为一个完整的生态系统,众多开源工具面向高度扩展的分布式计算. 支持的操作系统:Windows.Linux和OS X. 相关链接: http://hadoop.apache.org 2. Ambari 作为Hadoop生态系统的一部分,这个Apache项目提供了基于Web的直观界面,可用于配置.管理和监控Hadoop集群.有些开发人员想把Ambari的功能整合到自己的应用程序当…
一.Hadoop相关工具 1. Hadoop Apache的Hadoop项目已几乎与大数据划上了等号.它不断壮大起来,已成为一个完整的生态系统,众多开源工具面向高度扩展的分布式计算. 支持的操作系统:Windows.Linux和OS X. 相关链接:http://hadoop.apache.org 2. Ambari 作为Hadoop生态系统的一部分,这个Apache项目提供了基于Web的直观界面,可用于配置.管理和监控Hadoop集群.有些开发人员想把Ambari的功能整合到自己的应用程序当中…
使用solr6.3 + Hbase Indexer ,通过Hbase-indexer从Hbase建立索引到solr中,进行全文搜索. 两种实现方式:① 开启hbase-indexer进行实时同步新数据 ② 使用MapReduce给存量数据创建索引. 在用MR跑索引的过程中,碰到问题:Mapper数总共35个,但failed了4个,成功也显示35个,整个JOB显示成功success.但是最终索引总数,比hbase表中数据要少,查看MR的counter,有插入错误的情况,如下所示: DirectSo…
Spark Core面试篇01 一.简答题 1.Spark master使用zookeeper进行HA的,有哪些元数据保存在Zookeeper? 答:spark通过这个参数spark.deploy.zookeeper.dir指定master元数据在zookeeper中保存的位置,包括Worker,Driver和Application以及Executors.standby节点要从zk中,获得元数据信息,恢复集群运行状态,才能对外继续提供服务,作业提交资源申请等,在恢复前是不能接受请求的.另外,Ma…
Spark Core面试篇01 随着Spark技术在企业中应用越来越广泛,Spark成为大数据开发必须掌握的技能.前期分享了很多关于Spark的学习视频和文章,为了进一步巩固和掌握Spark,在原有spark专刊基础上,新增<Spark面试2000题>专刊,题集包含基础概念.原理.编码开发.性能调优.运维.源代码以及Spark周边生态系统等.部分题集来源于互联网,由梅峰谷志愿者收集和整理,部分题集由梅峰谷志愿者结合生产实际碰到的问题设计出来,希望能给大家带来帮助. 一.简答题 1.Spark…
说到处理大数据的工具,普通的开源解决方案(尤其是Apache Hadoop)堪称中流砥柱.弗雷斯特调研公司的分析师Mike Gualtieri最近预测,在接下来几年,“100%的大公司”会采用Hadoop.Market Research的一份报告预测,到2011年,Hadoop市场会以58%的年复合增长率(CAGR)高速增长:到2020年,市场产值会超过10亿美元.IBM更是非常看好开源大数据工具,派出了3500名研究人员开发Apache Spark,这个工具是Hadoop生态系统的一部分. 这…
Tags: Hadoop Centos7.5安装分布式Hadoop2.6.0+Hbase+Hive(CDH5.14.2离线安装tar包) Centos7.5安装分布式Hadoop2.6.0+Hbase+Hive(CDH5.14.2离线安装tar包) 主机环境 软件环境 主机规划 主机安装前准备 安装jdk1.8 安装zookeeper 安装hadoop 配置HDFS 配置YARN 集群初始化 启动HDFS 启动YARN 整个集群启动顺序 启动 停止 Hbase安装 Hive安装 主机环境 基本配…
01 关于本书 02 代码约定 03 关于例子 04 如何联系我们 1 核心模块 11 介绍 111 内建函数和异常 112 操作系统接口模块 113 类型支持模块 114 正则表达式 115 语言支持模块 12 _ _builtin_ _ 模块 121 使用元组或字典中的参数调用函数 1211 Example 1-1 使用 apply 函数 1212 Example 1-2 使用 apply 函数传递关键字参数 1213 Example 1-3 使用 apply 函数调用基类的构造函数 122…
Python Standard Library "We'd like to pretend that 'Fredrik' is a role, but even hundreds of volunteers couldn't possibly keep up. No, 'Fredrik' is the result of crossing an http server with a spam filter with an emacs whatsit and some other stuff be…
本文会使用一个案例,就mybatis的一些基础语法进行讲解.案例中使用到的数据库表和对象如下: article表:这个表存放的是文章的基础信息 -- ---------------------------- -- Table structure for article -- ---------------------------- DROP TABLE IF EXISTS `article`; CREATE TABLE `article` ( `article_id` ) NOT NULL AU…
5.1 多job串联 一个稍复杂点的处理逻辑往往需要多个mapreduce程序串联处理,多job的串联可以借助mapreduce框架的JobControl实现 示例代码: ControlledJob cJob1 = new ControlledJob(job1.getConfiguration()); ControlledJob cJob2 = new ControlledJob(job2.getConfiguration()); ControlledJob cJob3 = new Contro…
6.2.5 硬件性能问题 尽管单独的硬件的MTTF(平均失效前时间)都数以年记,然而在集群中就完全不是这么一回事了.整个集群的MTTF就要小得多.这一节要介绍如何确定CPU,内存,磁盘和网络是否过度利用了,以及如何将它们的利用率调节到一个合理的水平. 技术39 查找硬件的失效 节点失效可能有如下原因:磁盘控制器失效,磁盘空间事故,其他硬件事故,以及Hadoop自身的缺陷(可能性较低).节点失效将会导致MapReduce作业执行时间变长.在较小的集群上的影响要更为明显.接下来就要介绍如何确定集群中…
本文example6环境与前Hadoop 1.x异,于Hadoop 2.x环境测试. 功能与前面相同的日志处理程序. 第一newLISP文字,游玩mapper任务.于stdin读取文本数据,将did由于key, value至1,结果是随后被输出到stdout 第二个newLISP脚本.起到reducer的作用,在stdin中读取<key, values>, key是dic. values是全部的value,简单对value求和后.写到stdout中 最后应该能够在HDFS下看到结果. 用脚本编…
ReduceTask的运行的整个过程 背下来1.启动线程到mapTask那里去拷贝数据,拉取属于每一个reducetask自己内部的数据2.数据的合并,拉取过来的数据进行合并,合并的过程,有可能在内存当中,有可能在磁盘当中,有可能在内存和磁盘当中,合并的时候同时要进行分组操作3.调用reduce逻辑4.数据输出…
Hadoop 中利用 mapreduce 读写 mysql 数据   有时候我们在项目中会遇到输入结果集很大,但是输出结果很小,比如一些 pv.uv 数据,然后为了实时查询的需求,或者一些 OLAP 的需求,我们需要 mapreduce 与 mysql 进行数据的交互,而这些特性正是 hbase 或者 hive 目前亟待改进的地方. 好了言归正传,简单的说说背景.原理以及需要注意的地方: 1.为了方便 MapReduce 直接访问关系型数据库(Mysql,Oracle),Hadoop提供了DBI…
在上一节我们分析了Child子进程启动,处理Map.Reduce任务的主要过程,但对于一些细节没有分析,这一节主要对MapOutputBuffer这个关键类进行分析. MapOutputBuffer顾名思义就是Map输出结果的一个Buffer,用户在编写map方法的时候有一个参数OutputCollector: void map(K1 key, V1 value, OutputCollector<K2, V2> output, Reporter reporter) throws IOExcep…
在上一节我们分析了TaskTracker如何对JobTracker分配过来的任务进行初始化,并创建各类JVM启动所需的信息,最终创建JVM的整个过程,本节我们继续来看,JVM启动后,执行的是Child类中的Main方法,这个方法是如何执行的. 1,从命令参数中解析相应参数,获取JVMID.建立RPC连接.启动日志线程等初始化操作: 父进程(即TaskTracker)在启动子进程时,会加入一些参数,如本机的IP.端口.TaskAttemptID等等,通过解析可以得到JVMID. String ho…
在上一节分析了TaskTracker和JobTracker之间通过周期的心跳消息获取任务分配结果的过程.中间留了一个问题,就是任务到底是怎么分配的.任务的分配自然是由JobTracker做出来的,具体来说,存在一个抽象类:TaskScheduler,主要负责分配任务,继承该类的有几个类: CapacityTaskScheduler.FairScheduler.JobQueueTaskScheduler(LimitTasksPerJobTaskScheduler又继承于该类). 从名字大致可以看出…
MapReduce应用场景 前一阵子参加炼数成金的MapReduce培训,培训中的作业例子比较有代表性,用于解释问题再好不过了.有一本国外的有关MR的教材,比较实用,点此下载. MR能解决什么问题?一般来说,用的最多的应该是日志分析,海量数据排序处理.最近一段时间公司用MR来解决大量日志的离线并行分析问题. MapReduce机制 对于不熟悉MR工作原理的同学,推荐大家先去看一篇博文:http://blog.csdn.net/athenaer/article/details/8203990 常用…