「LuoguP4147」 玉蟾宫(并查集】的更多相关文章

题目背景 有一天,小猫rainbow和freda来到了湘西张家界的天门山玉蟾宫,玉蟾宫宫主蓝兔盛情地款待了它们,并赐予它们一片土地. 题目描述 这片土地被分成N*M个格子,每个格子里写着'R'或者'F',R代表这块土地被赐予了rainbow,F代表这块土地被赐予了freda. 现在freda要在这里卖萌...它要找一块矩形土地,要求这片土地都标着'F'并且面积最大. 但是rainbow和freda的OI水平都弱爆了,找不出这块土地,而蓝兔也想看freda卖萌(她显然是不会编程的……),所以它们决…
描述 Description 这片土地被分成N*M个格子,每个格子里写着'R'或者'F',R代表这块土地被赐予了rainbow,F代表这块土地被赐予了freda.现在freda要在这里卖萌...它要找一块矩形土地,要求这片土地都标着'F'并且面积最大.但是rainbow和freda的OI水平都弱爆了,找不出这块土地,而蓝兔也想看freda卖萌(她显然是不会编程的……),所以它们决定,如果你找到的土地面积为S,它们每人给你S两银子. 题解:类似与ZJOI2007制作棋盘,这叫悬线法?我感觉就是一个…
题目描述 一个点每过一个单位时间就会向 444 个方向扩散一个距离,如图所示:两个点 a .b 连通,记作 e(a,b),当且仅当 a .b的扩散区域有公共部分.连通块的定义是块内的任意两个点 u.v都必定存在路径 e(u,a0),e(a0,a1),…e(ak,v). 给定平面上的 n 个点,问最早什么时候它们形成一个连通块. 输入格式 第一行一个数 nnn ,以下 nnn 行,每行一个点坐标. 输出格式 输出仅一个数,表示最早的时刻所有点形成连通块. 样例 样例输入 2 0 0 5 5 样例输…
给你 n 个点,支持 m 次操作,每次为以下两种:连一条边,保证连完后是一棵树/森林:询问一个点能到达的最远的点与该点的距离.强制在线. n≤3×10^5 n≤3×10^5 ,m≤5×10^5 m≤5×10^5 . 我们知道与一个点距离最大的点为任意一个直径的两个端点之一. 两棵树之间连一条边,新树直径的两个端点一定为第一棵树直径的两个端点和第二棵树直径的两个端点这四者中之二. 于是我们可以用lct和并查集来维护树的直径的两个端点. #include<iostream> #include<…
题意 给一个$ n \times m$ 的网格,每个格子里有一个数字,非 \(0\) 即 \(1\),行从上往下依次编号为 \(1, 2, \cdots, n\),列从左往右依次编号为 \(1, 2, \cdots, m\). 给 \(q\) 次操作,每次给定一个以 \((x_1,y_1)\) 为左上角,\((x_2,y_2)\) 为右下角的矩形内所有格子里的数字都变成 \(1\).问每次操作之后,所有数字为 \(1\)的格子构成的四连通块的个数. \(1<=n,m<=1000\) \(1&l…
「luogu3402」[模板]可持久化并查集 传送门 我们可以用一个可持久化数组来存每个节点的父亲. 单点信息更新和查询就用主席树多花 一个 \(\log\) 的代价来搞. 然后考虑如何合并两个点. 由于我们要做到可持久化,所以我们就考虑用启发式合并. 至于路径压缩,ta好像会因为某些原因而MLE和TLE 其实我也没试过 那么我们在合并的时候就只需要借助主席树完成单点查询和修改就好了. 注意一个地方值得注意,就是在修改时因为我们的线段树是可持久化的,所以会通向之前版本的节点,所以不要覆盖之前的信…
题目描述 给你 $n$ 个点,支持 $m$ 次操作,每次为以下两种:连一条边,保证连完后是一棵树/森林:询问一个点能到达的最远的点与该点的距离.强制在线. $n\le 3\times 10^5$ ,$m\le 5\times 10^5$ . 题解 树的直径+并查集+LCT 与直径相关的结论1:与一个点距离最大的点为任意一条直径的两个端点之一. 与直径相关的结论2:两棵树之间连一条边,新树直径的两个端点一定为第一棵树直径的两个端点和第二棵树直径的两个端点这四者中之二. 于是问题就变简单了,用并查集…
算是挺基础的东西 Description     约翰和贝茜在玩一个方块游戏.编号为1到n的n(1≤n≤30000)个方块正放在地上.每个构成一个立方柱.    游戏开始后,约翰会给贝茜发出P(1≤P≤100000)个指令.指令有两种:     1.移动(M):将包含X的立方柱移动到包含Y的立方柱上.     2.统计(C):统计名含X的立方柱中,在X下方的方块数目.     写个程序帮贝茜完成游戏. Input     第1行输入P,之后P行每行输入一条指令.形式为“M X Y”或者“C X”…
奇妙的模型转化以及并查集思想 模型概述 有图$G=(V,E)$,初始所有点为白色,现在要将其中一些点染为黑色,要求染色后满足:$∀(u,v)∈E$,$∃col_u!=col_v$.求最小染色点数. 题目描述 曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街.河蟹看到欢快的曹,感到不爽.河蟹决定封锁阳光大学,不让曹刷街. 阳光大学的校园是一张由N个点构成的无向图,N个点之间由M条道路连接.每只河蟹可以对一个点进行封锁,当某个点被封锁后,与这个点相连的道路就被封锁了,曹就无法在与…
题意 规定区间\((a,b)\)到区间\((c,d)\)有边当且仅当\(c<a<d\)或\(c<b<d\). 起初区间集合为空.有\(n\)(\(n\leq 10^5\))次操作,每次操作形如: \(1\) \(x\) \(y\)(\(|x|,|y|\leq10^9\)):加入一个新区间\((x,y)\),保证新区间长度最长 \(2\) \(x\) \(y\):询问第\(i\)个加入第区间能否到达第\(j\)个加入第区间,保证询问合法 题解 考虑连边的两种情况:第一种是包含,小的向…
题意 你要维护一张\(n\)个点的无向简单图.你被要求执行\(m\)条操作,加入删除一条边及查询两个点是否连通. 0:加入一条边.保证它不存在. 1:删除一条边.保证它存在. 2:查询两个点是否联通. \(n \leq 5\times 10^3, m \leq 5\times 10^5\) 题解 第一次写按时间分治的题,感觉还是比较 清新 有趣的 对时间建线段树,一个结点\([l, r]\)上存储在时间\([l, r]\)上存在的边集,那么询问在叶子结点上 对这颗线段树\(dfs\),我们到一个…
把 $Noi2018$ day1t1 想出来还是挺开心的,虽然是一道水题~ 预处理出来 1 号点到其它点的最短路,然后预处理边权从大到小排序后加入前 $i$ 个边的并查集. 这个并查集用可持久化线段树维护可持久化数组来完成. 每次询问时在边集上二分一下,找到对应的并查集,然后找到祖先并输出极小值即可. #include <bits/stdc++.h> #define N 400005 #define ll long long #define setIO(s) freopen(s".i…
题目传送门 https://loj.ac/problem/6038 题解 根据树的直径的两个性质: 距离树上一个点最远的点一定是任意一条直径的一个端点. 两个联通块的并的直径是各自的联通块的两条直径的四个端点的六个连线段之一. 于是我们可以维护每一个联通块的直径就可以了,这个可以用并查集实现. 但是从六条路径中选择直径需要求出每一条路径的长度,怎么求呢? 因为有强制在线部分,所以不能直接把树建立出来. 那就用 LCT 吧. 时间复杂度 \(O(q(\log n + \alpha(n)))\).…
80分打法 首先二分最后答案,答案即为r,可看作以每个k为圆心r为半径的圆 我们进行并查集维护,维护相交的圆的边界 最后判断是否存在圆将上下边界覆盖,如有证明不行 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<cmath> 5 #include<algorithm> 6 #include<string> 7 #include<vect…
题面 点此看题 题意很明白,就不转述了吧. 题解 题目相当于告诉了我们若干等量关系,每个限制 l 1 , r 1 , l 2 , r 2 \tt l_1,r_1,l_2,r_2 l1​,r1​,l2​,r2​ 相当于 S l 1 = S l 2 , S l 1 + 1 = S l 2 + 1 , - , S r 1 = S r 2 \tt S_{l_1}=S_{l_2},S_{l_1+1}=S_{l_2+1},\dots,S_{r_1}=S_{r_2} Sl1​​=Sl2​​,Sl1​+1​=S…
「SDOI2014」向量集 维护一个向量集合,在线支持以下操作: A x y :加入向量 \((x, y)\): Q x y l r:询问第 \(L\) 个到第 \(R\) 个加入的向量与向量 \((x, y)\) 的点积的最大值.集合初始时为空. 对于所有的数据,\(1 \leq N \leq 4 \times 10^5\),操作中的向量坐标满足 \(|x|,|y| \leq 10^8\),询问满足 \(1 \leq L \leq R \leq T\),其中 \(T\) 为已经加入的向量个数.…
哗啦啦的小彭玉染色问题 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acdream.info/problem?pid=1725 Description 哗啦啦,哗啦啦~ 小彭玉很开心,拿着一堆海报就开始宣传明天要开始的哗啦啦大会了~ 小彭玉很可爱,他的海报都是五颜六色的~ 哗啦啦,哗啦啦~ 小彭玉在一个巨大的宣传栏上贴了一大堆海报! “真是好看呢!”,唐老师说道. 唐老师这时,就想出了一个题目,“这面宣传栏,最后能看见多少颜色呢?” 狗…
「HNOI2016」最小公倍数 考虑暴力,对每个询问,处理出\(\le a,\le b\)的与询问点在一起的联通块,然后判断是否是一个联通块,且联通块\(a,b\)最大值是否满足要求. 然后很显然需要去离线搞一下,考虑定期重构. 具体的,先把边按\(a\)排序,然后每\(S\)分一块. 处理每一块时,把前面所有块的边和权值在这个块内的询问放在一起按\(b\)排序,这个可以用类似归并的思路\(O(n)\)完成. 然后遍历这个排序后的东西,用带权并查集维护联通性. 具体的,如果是边,就在并查集里面加…
「SCOI2016」萌萌哒 这思路厉害啊.. 容易发现有个暴力是并查集 然后我想了半天线段树优化无果 然后正解是倍增优化并查集 有这个思路就简单了,就是开一个并查集代表每个开头\(i\)每个长\(2^j\)的区间的归属 然后合并就随便合并 最后需要\(2^0\)的信息,从上面把信息分裂传下来就好了 Code: #include <cstdio> #include <cctype> const int N=1e5+10; template <class T> void r…
「WC2018」州区划分(FWT) 我去弄了一个升级版的博客主题,比以前好看多了.感谢 @Wider 不过我有阅读模式的话不知为何 \(\text{LATEX}\) 不能用,所以我就把这个功能删掉了. 洛谷上不开 \(O_2\) 根本过不去,自带大常数被卡到 \(15\) 分... 首先题了读了很久,发现一个州的集合可以不连通... 我们可以 \(O(n^22^n)\) 检验每一个状态是否满足条件,用并查集即可. \(f[S]\) 为状态 \(S\) 时的满意度之和,\(g[S]\) 当状态 \…
开始 网络中的 Socket 和 Socket API 是用来跨网络的消息传送的,它提供了 进程间通信(IPC) 的一种形式.网络可以是逻辑的.本地的电脑网络,或者是可以物理连接到外网的网络,并且可以连接到其它网络.英特网就是一个明显的例子,就是那个你通过 ISP 连接到的网络 本篇教程有三个不同的迭代阶段,来展示如何使用 Python 构建一个 Socket 服务器和客户端 我们将以一个简单的 Socket 服务器和客户端程序来开始本教程 当你看完 API 了解例子是怎么运行起来以后,我们将会…
「SCOI2016」萌萌哒 题目描述 一个长度为 \(n\) 的大数,用 \(S_1S_2S_3 \ldots S_n\) 表示,其中 \(S_i\) 表示数的第 \(i\) 位,\(S_1\) 是数的最高位,告诉你一些限制条件,每个条件表示为四个数 $(l_1, r_1, l_2, r_2) $,即两个长度相同的区间,表示子串 $S_{l_1}S_{l_1 + 1}S_{l_1 + 2} \ldots S_{r_1} $与 \(S_{l_2}S_{l_2 + 1}S_{l_2 + 2} \ld…
「NOI2018」归程 题目描述 本题的故事发生在魔力之都,在这里我们将为你介绍一些必要的设定. 魔力之都可以抽象成一个 >\(1\) 个节点. \(m\) 条边的无向连通图(节点的编号从 \(1\) 至 \(n\) ).我们依次用 \(l, a\) 描述一 条边的长度.海拔. 作为季风气候的代表城市,魔力之都时常有雨水相伴,因此道路积水总是不 可避免 的.由于整个城市的排水系统连通,因此有积水的边一定是海拔相对最低的一些边.我们用水>位线来描述降雨的程度,它的意义是:所有海拔不超过水位线的边…
「NOI2016」网格 容易注意到,答案最多为2,也就是说答案为-\(1,0,1,2\)四种,考虑逐个判断. 无解的情况比较简单 如果\(nm\le c+1\),显然无解 如果\(nm=c+2\),判断2个跳蚤(如无说明,以下白点指跳蚤)是否四联通(如无说明,以下联通均指四联通),如果是,无解. 先不考虑复杂度 \(0\)的情况,就是白点有两个以上联通块,可以直接bfs判断 \(1\)的情况,就是白点存在割点,可以通过tarjan判断 \(2\)的情况,就是其他情况 这样的复杂度是\(O(Tnm…
「BZOJ3694」「FJ2014集训」最短路 首先树剖没得说了,这里说一下并查集的做法, 对于一条非树边,它会影响的点就只有u(i),v(i)到lca,对于lca-v的路径上所有点x,都可通过1-t-u-v-x,长度为dep[u]+dep[v]+w(i)-dep[x],lca-u同理, 将非树边按dep[u]+dep[v]+w(i)从小到大排序,显然每个点被前一条能更新他的边更新后即是最优解,此时将它与父亲节点合并,修改的时候用并查集向上修改即可. #include<algorithm> #…
「CSP-S」2019年第一届Day1游记+题解 Day 1 7:30 A.M. 8:10 A.M. 8:30 A.M. T1 格雷码 题目 考场经历+思考(正解) 8:50 A.M. T2 括号树 题目 考场经历+思考(伪正解) 正解 10:50 A.M. T3 树上的数 题目 考场经历+思考 正解 12:00 写了那么多场的模拟赛,这次终于是来真的了- 但是-写这篇博客心情复杂啊- 不说心情了-哎 Day 1 7:30 A.M. 很早就到了,但是到的时候发现其实很多人都到了- 心态感觉良好,…
最长连续序列 题目[128]:链接. 解题思路 节点本身的值作为节点的标号,两节点相邻,即允许合并(x, y)的条件为x == y+1 . 因为数组中可能会出现值为 -1 的节点,因此不能把 root[x] == -1 作为根节点的特征,所以采取 root[x] == x 作为判断是否为根节点的条件.默认较小的节点作为连通分量的根. 此外,使用 map<int, int> counter 记录节点所在连通分量的节点个数(也是merge 的返回值). class Solution { publi…
36.1 party(CF623D) 很是鸡贼的一道题 首先要明确一点,抓人是有策略,而不是随机的,可以认为等同于按一个给定的顺序猜人,那么这时猜中的概率就只是抓住这个人的概率了 对于每一次猜测,因为使用最优策略,所以每一步都猜当前使游戏结束几率最大的那个人 令\(q_i=1-p_i\)即为第\(i\)个人不被猜中的概率 则第\(i\)个人在被猜\(j\)次后已经被猜中过的概率即为\((1-q_i^j)\) 那么这时游戏已经结束的概率即为\(\prod\limits_i(1-q_i^j)\) 于…
并查集 这部分主要是学习了 labuladong 公众号中对于并查集的讲解,文章链接如下: Union-Find 并查集算法详解 Union-Find 算法怎么应用? 概述 并查集用于解决图论中「动态连通性」问题: 主要实现以下几个API class UF { /* 将 p 和 q 连接 */ public void union(int p, int q); /* 判断 p 和 q 是否连通 */ public boolean connected(int p, int q); /* 返回图中有多…
「CTSC2010」产品销售 30pts的费用流都会吧... 100pts只要模拟费用流就行了,是不是很简单呀( 咕咕咕 令\(M_i\)表示\(i-1\to i\)的正向边,\(M_i^{'}\)表示反向边 \(C_i\)表示\(i \to i-1\)的正向边,\(C_i^{'}\)表示反向边 依次枚举\(1,\cdots,n\) 当前枚举到\(i\),要使\(i\rightarrow t\)满流 两种决策:\(s \rightarrow j \to j+1 \to \cdots \to i\…