洛谷 P2568 GCD】的更多相关文章

P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入样例#1: 4 输出样例#1: 4 说明 对于样例\((2,2),(2,4),(3,3),(4,2)\) \(1<=N<=10^7\) 来源:bzoj2818 本题数据为洛谷自造数据,使用CYaRon耗时5分钟完成数据制作. Solution 方法1:莫比乌斯反演,方法和yy的gcd一样 方法2:…
题目链接:传送门 题目: 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入样例#: 复制 输出样例#: 复制 说明 对于样例(,),(,),(,),(,) <=N<=^ 来源:bzoj2818 本题数据为洛谷自造数据,使用CYaRon耗时5分钟完成数据制作. 看了好几天数论了,忍不住出来切切水题. 思路: 若已知x,y,因为gcd(x, y)为素数,令p = gc…
https://www.luogu.org/problemnew/show/P2568#sub 最喜欢题面简洁的题目了. 本题为求两个数的gcd是素数,那么我们将x和y拆一下, 假设p为$gcd(x,y)$,且p是一个素数,$x=a \times p , y = b \times p $. 然而要满足p的条件的话,a和b一定是互质的,满足$0 \le a,b \le \frac{n}{p} $ 这样的话我们可以枚举这个质数p,将小于$\frac{n}{p}$的数,以及与它互质的数加起来. 互质的…
https://www.luogu.org/problemnew/show/P2568 统计n以内gcd为质数的数的个数. 求 \(\sum\limits_p \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n} [gcd(i,j)==p]\) 一开始还以为要莫比乌斯反演. 推了半天不知道怎么求,遂看题解: $\sum\limits_p \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n} [gcd(i,j)==p] =\sum\l…
题目大意:给你$n(1\leqslant n\leqslant 10^7)$,求$\displaystyle\sum\limits_{x=1}^n\displaystyle\sum\limits_{y=1}^n[(x,y)\in \rm prime]$($(a,b)$为$a,b$的$gcd$) 题解:可以用莫比乌斯反演来做,同这道题,只需要把$m$改成$n$就行了 卡点:无 C++ Code:(莫比乌斯反演) #include <cstdio> #include <cstring>…
题意:$\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(i,j)\epsilon prime]$. 对于这类题一般就是枚举gcd,可得: =$\sum_{d\epsilon prime}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(i,j)==d]$ =$\sum_{d\epsilon prime}\sum_{i=1}^{{\lfloor \frac{n}{d}\rfloor}}\mu(i){\lfloor \frac{n}{id}\rfloor}{\lfl…
原题链接 庆祝一下:数论紫题达成成就! 第一道数论紫题.写个题解庆祝一下吧. 简要题意:求 \[\sum_{i=1}^n \sum_{j=1}^n [gcd(i,j)==p] \] 其中 \(p\) 为素数. 注: $ [A] = 0 $ 当且仅当 \(A\) 不成立. $ [A] = 1 $ 当且仅当 \(A\) 成立. 这不就是单位函数的定义嘛. 先抛个定义: \[f_n = \sum_{i=1}^n [\gcd(i,n) == 1] \] 即 \(\leq n\) 且 与 \(n\) 互质…
传送门 这题和p2257一样……不过是n和m相同而已…… 所以虽然正解是欧拉函数然而直接改改就行了所以懒得再码一遍了2333 不过这题卡空间,记得mu开short,vis开bool //minamoto #include<cstdio> #define ll long long ; ],n,m;short mu[N];bool vis[N];ll sum[N],ans; void init(int n){ mu[]=; ;i<=n;++i){ ,p[++m]=i; ;j<=m&am…
洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum 输入输出样例 输入样例#1: 2 输出样例#1: 5 说明 数据范围 30% n<=3000 60% 7000<=n<=7100 100% n<=100000 Solution 这道题的做法貌似很多...如果你同时会狄利克雷卷积和莫比乌斯反演的话也可以强…
P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n,m. 第二行n个整数表示a[1]..a[n]. 以下m行,每行2个整数表示询问区间的左右端点. 保证输入数据合法. 输出格式 共m行,每行表示一个询问的答案. 输入输出样例 输入样例#1: 5 3 4 12 3 6…