之前我们讨论了VC Dimension,最终得到结论,如果我们的hypetheset的VC Dimension是有限的,并且有足够的资料,演算法能够找到一个hypethesis,它的Ein很低的话,那么我们就大概学到了东西. 看看之前的learning flow: 我们有一个target function,能够产生一堆的sample,x 由某一个分布产生,未来的测试也有同一个分布产生. 演算法想办法从资料和假设集里找到一个好的假设.好的假设集是VC Dimension是有限的,好的假设是Ein是…