1.graph和参数的store和restore 2.tensorboard查看 2.1tensorboard根据.meta文件查看图 2.2如何看图…
# 安装 2.7 环境conda create -n python2. python= conda activate python2. # 安装 1.1.0 gpu版本pip # 配置环境变量export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-8.0/lib64 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-8.0/lib64:/usr/local/cuda-8.0/ex…
Beholder is a TensorBoard plugin for viewing frames of a video while your model trains. It comes with tools to visualize the parameters of your network, visualize arbitrary arrays like gradients. Beholder是一个TensorBoard插件,用于在模型训练时查看视频帧. 它具有可视化网络参数的工具,…
欢迎大家关注腾讯云技术社区-博客园官方主页,我们将持续在博客园为大家推荐技术精品文章哦~ 作者 :董超 上一篇文章我们介绍了 MxNet 的安装,但 MxNet 有个缺点,那就是文档不太全,用起来可能是要看源代码才能理解某个方法的含义,所以今天我们就介绍一下 TensorFlow,这个由谷歌爸爸出品的深度学习框架,文档比较全-以后的我们也都使用这个框架- 0x00 概要 TensorFlow是谷歌爸爸出的一个开源机器学习框架,目前已被广泛应用,谷歌爸爸出品即使性能不是最强的(其实性能也不错),但…
Keras是什么,以及相关的基础知识,这里就不做详细介绍,请参考Keras学习站点http://keras-cn.readthedocs.io/en/latest/ Tensorflow作为backend时的训练逻辑梳理,主要是结合项目,研究了下源代码! 我们的项目是智能问答机器人,基于双向RNN(准确的说是GRU)网络,这里网络结构,就不做介绍,只研究其中的训练逻辑,我们的训练是基于fit_generator,即基于生成器模型,节省内存,有助效率提升. 什么是生成器以及生成器的工作原理,这里不…
在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率.这次换一种神经网络(多层神经网络)来进行训练和测试. 1.获取MNIST数据 MNIST数据集只要一行代码就可以获取的到,非常方便.关于MNIST的基本信息可以参考我的上一篇随笔. mnist = input_data.read_data_sets('./data/mnist', one_hot=True) 2.模型基本结构 本次采用的训练模型为三层神经网络结构,输入层节点数与MNIST一行数据的长度一…
利用卷积神经网络训练图像数据分为以下几个步骤 读取图片文件 产生用于训练的批次 定义训练的模型(包括初始化参数,卷积.池化层等参数.网络) 训练 1 读取图片文件 def get_files(filename): class_train = [] label_train = [] for train_class in os.listdir(filename): for pic in os.listdir(filename+train_class): class_train.append(file…
装载自:http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html TensorFlow训练MNIST 这个教程的目标读者是对机器学习和TensorFlow都不太了解的新手.如果你已经了解MNIST和softmax回归(softmax regression)的相关知识,你可以阅读这个快速上手教程. 当我们开始学习编程的时候,第一件事往往是学习打印"Hello World".就好比编程入门有Hello World,机器学习入门…
现在一直在用TensorFlow训练CNN和LSTM神经网络,但是训练期间遇到了好多坑,现就遇到的各种坑做一下总结 1.问题一;训练CNN的时候出现nan CNN是我最开始接触的网络,我的研究课题就是利用CNN,LSTM等网络对人体动作做识别.动作数据来源于手机的加速度计,做动作的人在固定位置携带手机并做特定动作,实验人员接收手机的加速度计数值并打上特定的动作标签. 在训练CNN网络时一共遇到两处坑,一是遇到在训练期间遇到nan错误,这个错误很常见.nan的错误多源于你的学习率设置的太大或者ba…
tensorflow训练验证码识别模型的样本可以使用captcha生成,captcha在linux中的安装也很简单: pip install captcha 生成验证码: # -*- coding: utf-8 -*- from captcha.image import ImageCaptcha # pip install captcha import numpy as np from PIL import Image import random import cv2 import os # 验…
论文笔记:Densely Connected Convolutional Networks(DenseNet模型详解) 2017年09月28日 11:58:49 阅读数:1814 [ 转载自http://www.yyliu.cn/post/7cabb4ff.html ] CVPR 2017上,清华大学的Zhuang Liu.康奈尔大学的Gao Huang和Kilian Q.Weinberger,以及Facebook研究员Laurens van der Maaten 所作论文Densely Con…
huangmindong的专栏       目录视图 摘要视图 订阅 赠书 | 异步2周年,技术图书免费选      程序员8月书讯      项目管理+代码托管+文档协作,开发更流畅 Android开发时,那些相见恨晚的工具或网站! 2017-04-06 13:44 173人阅读 评论(0) 收藏 举报  分类: android   目录(?)[+]   1,源码网站 https://github.com/googlesamples Android系统每次推出一些新特性,Google都会写一些…
ZC:自己训练 的文章 貌似 能度娘出来很多,得 自己弄过才知道哪些个是坑 哪些个好用...(在CSDN文章的右侧 也有列出很多相关的文章链接)(貌似 度娘的关键字是"TensorFlow 自己训练") 1.完整实现利用tensorflow训练自己的图片数据集 - 故沉的博客 - CSDN博客.html(https://blog.csdn.net/jesmine_gu/article/details/81155787) ZC:该作者 提供了 自己的代码(github) 2.猫狗 用自己…
这次来训练一个基于CNN的语音识别模型.训练完成后,我们将尝试将此模型用于Hotword detection. 人类是怎样听懂一句话的呢?以汉语为例,当听到"wo shi"的录音时,我们会想,有哪两个字是读作"wo shi"的,有人想到的是"我是",也有人觉得是"我市".我们可以通过"wo shi"的频率的特征,匹配到一些结果,我们这次要训练的模型,也是基于频率特征的CNN模型.单纯的基于频率特征的识别有很…
1.报错:“db_lmdb.hpp:14] Check failed:mdb_status ==0(112 vs.0)磁盘空间不足.” 这问题是由于lmdb在windows下无法使用lmdb的库,所以要改成leveldb. 但是要注意:由于backend默认的是lmdb,所以你每一次用到生成的图片leveldb数据的时候,都要把“--backend=leveldb”带上.如转换图片格式时: 又如计算图像的均值时: 还有在.prototxt中 data_param { source: "./mys…
一.深度学习中常用的调节参数 本节为笔者上课笔记(CDA深度学习实战课程第一期) 1.学习率 步长的选择:你走的距离长短,越短当然不会错过,但是耗时间.步长的选择比较麻烦.步长越小,越容易得到局部最优化(到了比较大的山谷,就出不去了),而大了会全局最优 一般来说,前1000步,很大,0.1:到了后面,迭代次数增高,下降0.01,再多,然后再小一些. 2.权重 梯度消失的情况,就是当数值接近于正向∞,求导之后就更小的,约等于0,偏导为0 梯度爆炸,数值无限大 对于梯度消失现象:激活函数 Sigmo…
以前使用Caffe的时候没注意这个,现在使用预训练模型来动手做时遇到了.在slim中的自带模型中inception, resnet, mobilenet等都自带BN层,这个坑在<实战Google深度学习框架>第二版这本书P166里只是提了一句,没有做出解答. 书中说训练时和测试时使用的参数is_training都为True,然后给出了一个链接供参考.本人刚开始使用时也是按照书中的做法没有改动,后来从保存后的checkpoint中加载模型做预测时出了问题:当改变需要预测数据的batchsize时…
一个典型的SGD过程中,一个epoch内的一批样本的平均梯度与梯度方差,在下图中得到了展示. 无论什么样的网络结构,无论是哪一层网络的梯度,大体上都遵循下面这样的规律: 高信号/噪音比一段时间之后,信号/噪音比逐渐降低,收敛速度减缓,梯度的方差增大,梯度均值减小. 噪音增加的作用及其必要性会在另一篇文章中阐述,这里仅讨论噪音的产生对于模型收敛速度能够产生怎样的影响. 首先定义模型收敛速度:训练后期,噪音梯度导致权重更新时,导致系统新增的熵 H(混乱度)对于SGD迭代次数 t 的导数. 对于第k层…
一.问题 使用deeplearning4j进行GPU训练时,可能会出现java.lang.UnsatisfiedLinkError: no jnicudnn in java.library.path错误. 二.错误 15:43:26.389 [main] INFO org.nd4j.linalg.api.ops.executioner.DefaultOpExecutioner - Backend used: [CUDA]; OS: [Windows 10] 15:43:26.390 [main]…
TensorFlow安装时,TensorFlow环境已经调好了,就是下面的第(3)步, 可我自己偏偏选了个Python3.7,因为检测到自己的Python最新版本为3.7,就手贱安了TensorFlow环境下的Python解释器为3.7的,到最后安装完了才知道,运行tensorflow时会报错.而重新安装3.5版本的会报下面的错 原因是,tensorflow支持的Python版本最高为3.5(也有说3.6的),3.7的不支持,所以就得想办法怎么卸载这个安装在tensorflow环境下的Pytho…
本机使用的 GPU 是 GeForce 840M,2G 显存,本机内存 8G. 试验时,使用 vgg 网络,调整 vgg 网络中的参数,使得使用对应的 batch_size 时不会提示内存溢出.使用的是 mnist 数据集,图片尺寸是28×28.结果如下: # batch_size = 1 # 参数总数:5946134 # batch_size = 32 # 参数总数:5262436 # batch_size = 64 # 参数总数:4770788 # batch_size = 100 # 参数…
将目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练. import xml.etree.ElementTree as ET import numpy as np import os import tensorflow as tf from PIL import Image classes = ["aeroplane", "bicycle", "bird", "boat", &quo…
自己搞了20万张图片100个分类,tensorflow训练23万次后...... 我自己把训练用的一张图片,弄乱之后做了一个预测 100个汉字,20多万张图片,tensorflow CNN训练23万次它自己停止训练了.预测的时候类似这样   我故意搞的缺边缺角的都能正常识别 预测结果类别是70,恰恰就是我其中一个训练集中的汉字 "亚" 准确率看样子还是不错的,就是不知道能有什么具体的应用了…
tensorflow训练了10万次,运行完毕,对这个word2vec终于有点感觉了 感觉它能找到词与词之间的关系,应该可以用来做推荐系统.自动摘要.相关搜索.联想什么的 tensorflow1.1.0 + python3.6 + win10 + i7 + 12G内存  数据样本大小95.3MB,训练时间大约20分钟 结果如下:…
理解dropout from:http://blog.csdn.net/stdcoutzyx/article/details/49022443 http://www.cnblogs.com/tornadomeet/p/3258122.html 开篇明义,dropout是指在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃.注意是暂时,对于随机梯度下降来说,由于是随机丢弃,故而每一个mini-batch都在训练不同的网络. Dropout是指在模型训练时随机让网络某些…
title: TensorFlow训练MNIST报错ResourceExhaustedError date: 2018-04-01 12:35:44 categories: deep learning tags: MNIST TensorFlow 在最后测试的一步报错: ResourceExhaustedError (see above for traceback): OOM when allocating tensor 搜索了一下才知道是GPU显存不足(emmmm....)造成的,可以把最后测…
TensorFlow 训练好模型参数的保存和恢复代码,之前就在想模型不应该每次要个结果都要重新训练一遍吧,应该训练一次就可以一直使用吧. TensorFlow 提供了 Saver 类,可以进行保存和恢复.下面是 TensorFlow-Examples 项目中提供的保存和恢复代码. ''' Save and Restore a model using TensorFlow. This example is using the MNIST database of handwritten digits…
在训练keras时,发现不使用GPU进行计算,而是采用CPU进行计算,导致计算速度很慢. 用如下代码可检测tensorflow的能使用设备情况: from tensorflow.python.client import device_lib print(device_lib.list_local_devices()) 查看是否只有CPU可用,发现不是,有GPU可用,但是为什么GPU利用率极低并且只有一个GPU在使用,另一个GPU利用率为0, 发现在启动时有一行报错: Could not load…
作者:韩信子@ShowMeAI 深度学习实战系列:https://www.showmeai.tech/tutorials/42 本文地址:https://www.showmeai.tech/article-detail/319 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 当今的很多AI算法落地,我们都需要依赖特定的机器学习框架,现在比较热门的 AI 工具库如 TensorFlow 和 PyTorch 都出自大厂,并且有很好的生态和资源,借助它们我们可以很…
神经网络模型的训练过程其实质上就是神经网络参数的设置过程 在神经网络优化算法中最常用的方法是反向传播算法,下图是反向传播算法流程图: 从上图可知,反向传播算法实现了一个迭代的过程,在每次迭代的开始,先需要选取一小部分训练数据,这一小部分数据叫做一个batch.然后这一个batch会通过前向传播算法得到神经网络的预测结果.计算出当前神经网络的预测答案与正确答案之间的差距(有监督学习,在训练时有一个标注好的数据集),最后根据预测值和真实值之间的差距,反向传播算法会相应的更新神经网络参数的取值,使在这…