机器学习之DBSCAN聚类算法】的更多相关文章

DBSCAN 聚类算法又称为密度聚类,是一种不断发张下线而不断扩张的算法,主要的参数是半径r和k值 DBSCAN的几个概念: 核心对象:某个点的密度达到算法设定的阈值则其为核心点,核心点的意思就是一个点在半径r的范围内,如果存在k个值,那么这个点就成为核心对象 直接密度可达:若点p在q的邻域内,且q是核心,则p-q称为直接密度可达 密度可达:若有q1, q2...qk,对任意qi与qi-1是直接密度可达,从q1和qk则是密度可达 边界点: 属于一个类的非核心点,不能再发展下线 噪声点: 不属于任…
可以看该博客:https://www.cnblogs.com/aijianiula/p/4339960.html 1.知识点 """ 基本概念: 1.核心对象:某个点的密度达到算法设定的阈值则其为核心点(即r邻域内点的数量不小于minpts) 2.邻域的距离阈值:设定的半径r 3.直接密度可达:某点p在点q的r邻域内,且q是核心点,则表示p-q是直接密度可达 4.噪声点:不属于任何一个类族的点 5.边界点:属于某一个类的非核心点,不能发展下线(即边界点没有密度可达的点) 超参…
机器学习六--K-means聚类算法 想想常见的分类算法有决策树.Logistic回归.SVM.贝叶斯等.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应.但是很多时候上述条件得不到满足,尤其是在处理海量数据的时候,如果通过预处理使得数据满足分类算法的要求,则代价非常大,想想如果给你50个G这么大的文本,里面已经分好词,这时需要将其按照给定的几十个关键字进行划分归类,监督学习的方法确实有点困难,而且也不划算,前期工作做得太多了. 这时候可以考…
1.优缺点 优点: (1)聚类速度快且能够有效处理噪声点和发现任意形状的空间聚类: (2)与K-MEANS比较起来,不需要输入要划分的聚类个数: (3)聚类簇的形状没有偏倚: (4)可以在需要时输入过滤噪声的参数. 缺点: (1)当数据量增大时,要求较大的内存支持I/O消耗也很大: (2)当空间聚类的密度不均匀.聚类间距差相差很大时,聚类质量较差,因为这种情况下参数MinPts和Eps选取困难. (3)算法聚类效果依赖与距离公式选取,实际应用中常用欧式距离,对于高维数据,存在“维数灾难”. 参考…
层次聚类和DBSCAN 前面说到K-means聚类算法,K-Means聚类是一种分散性聚类算法,本节主要是基于数据结构的聚类算法--层次聚类和基于密度的聚类算法--DBSCAN两种算法. 1.层次聚类 下面这样的结构应该比较常见,这就是一种层次聚类的树结构,层次聚类是通过计算不同类别点的相似度创建一颗有层次的树结构,在这颗树中,树的底层是原始数据点,顶层是一个聚类的根节点. 创建这样一棵树的方法有自底向上和自顶向下两种方式. 下面介绍一下如何利用自底向上的方式的构造这样一棵树: 为了便于说明,假…
DBSCAN方法及应用 1.DBSCAN密度聚类简介 DBSCAN 算法是一种基于密度的聚类算法: 1.聚类的时候不需要预先指定簇的个数 2.最终的簇的个数不确定DBSCAN算法将数据点分为三类: 1.核心点:在半径Eps内含有超过MinPts数目的点. 2.边界点:在半径Eps内点的数量小于MinPts,但是落在核心点的邻域内的点. 3.噪音点:既不是核心点也不是边界点的点. 如下图所示:图中黄色的点为边界点,因为在半径Eps内,它领域内的点不超过MinPts个,我们这里设置的MinPts为5…
实战部分主要针对某一具体算法对其原理进行较为详细的介绍,然后进行简单地实现(可能对算法性能考虑欠缺),这一部分主要介绍一些常见的一些聚类算法. K-means聚类算法 0.聚类算法算法简介 聚类算法算是机器学习中最为常见的一类算法,在无监督学习中,可以说聚类算法有着举足轻重的地位. 提到无监督学习,不同于前面介绍的有监督学习,无监督学习的数据没有对应的数据标签,我们只能从输入X中去进行一些知识发现或者预处理. 过去在有监督学习中,我们(让机器)通过X去预测Y,而到了无监督学习中,我们(让机器)只…
第一部分: 学习Mahout必需要知道的资料查找技能: 学会查官方帮助文档: 解压用于安装文件(mahout-distribution-0.6.tar.gz),找到例如以下位置.我将该文件解压到win7的G盘mahout目录下,路径例如以下所看到的: G:\mahout\mahout-distribution-0.6\docs 学会查源码的凝视文档: 方案一:用maven创建一个mahout的开发环境(我用的是win7,eclipse作为集成开发环境,之后在Maven Dependencies中…
本文来自同步博客. 前面几篇文章介绍了回归或分类的几个算法,它们的共同点是训练数据包含了输出结果,要求算法能够通过训练数据掌握规律,用于预测新输入数据的输出值.因此,回归算法或分类算法被称之为监督学习(Supervised Learning). 本篇文章将接触有别于监督学习的另一类机器学习算法——无监督学习(Unsupervised Learning).无监督学习是寻找缺乏标准答案的输入数据的规律.其中聚类算法是无监督学习主要的分支.今天介绍的K-Means算法就是聚类算法的其中一种比较常见的算…
本人以前主要focus在传统音频的软件开发,接触到的算法主要是音频信号处理相关的,如各种编解码算法和回声消除算法等.最近切到语音识别上,接触到的算法就变成了各种机器学习算法,如GMM等.K-means作为其中比较简单的一种肯定是要好好掌握的.今天就讲讲K-means的基本原理和代码实现.其中基本原理简述(主要是因为:1,K-means比较简单:2,网上有很多讲K-means基本原理的),重点放在代码实现上. 1, K-means基本原理 K均值(K-means)聚类算法是无监督聚类(聚类(clu…