Q-learning之一维世界的简单寻宝】的更多相关文章

Q-learning的算法: (1)先初始化一个Q table,Q table的行数是state的个数,列数是action的个数. (2)先随机选择一个作为初始状态S1,根据一些策略选择此状态下的动作,比如贪心策略,假设选择的动作为A1. (3)判断由A1动作之后的状态S2是不是终止状态,如果是终止状态,返回的reward,相当于找到了宝藏,游戏结束,如果不是最终状态,在S2状态时选择此时使Q值最大的action作为下一步的动作.可以得到一个实际的Q值.Q(S1,A1)=R+λ*maxQ(S2)…
作者:牛阿链接:https://www.zhihu.com/question/26408259/answer/123230350来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 2017年06月05日更新,最近重写了一遍代码,Flappy Bird Q-learning.你可以在这里试着训练一下,加到最大帧数,在一两分钟内就可以达到10+的分数. 原答案: 最近看到了一个回答.答主用汇编语言写了一个flappy bird并在其之上加了一个Q-learning的算法让…
之前讲到Sarsa和Q Learning都不太适合解决大规模问题,为什么呢? 因为传统的强化学习都有一张Q表,这张Q表记录了每个状态下,每个动作的q值,但是现实问题往往极其复杂,其状态非常多,甚至是连续的, 比如足球场上足球的位置,此时,内存将无力承受这张Q表. 价值函数近似 既然Q表太大,那么怎么办呢? 假设我们可以找到一种方法来预测q值,那么在某个状态下,就可以估计其每个动作的q值,这样就不需要Q表了,这就是价值函数近似. 假设这个函数由参数w描述,那么 状态价值函数就表示为 v(s)≍f(…
使用一维数据构造简单卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 神经网络对于一维数据非常重要,时序数据集.信号处理数据集和一些文本嵌入数据集都是一维数据,会频繁的使用到神经网络.我们在此利用一组一维数据构造卷积层-最大池化层-全连接层的卷积神经网络.希望给大家使用CNN处理一维数据一些帮助. 参考代码 # Implementing Different Layers # --------------------------------------- # # We will…
Deep Q Learning 使用gym的CartPole作为环境,使用QDN解决离散动作空间的问题. 一.导入需要的包和定义超参数 import tensorflow as tf import numpy as np import gym import time import random from collections import deque ##################### hyper parameters #################### # Hyper Para…
攻防世界PWN简单题 level0 开始考验栈溢出的相关知识了 Checksec 一下文件 看看都开了什么保护 和 是多少位的程序 发现是64位的程序, 扔进IDA64.IDA YYDS.. 进入主函数,通过伪代码分析逻辑,找出栈溢出漏洞 找到了栈溢出漏洞,开始寻找攻击手段. 找到了攻击手段.简单题就是如此简单.找一下callsystem地址,当然也可以直接用pwntools获取 找到了需要的地址0X400596 开始写exp攻击远程服务器 from pwn import * io = remo…
攻防世界PWN简单题 level2 此题考验的是对ROP链攻击的基础 万事开头PWN第一步checksec 一下 32位的小端程序,扔进IDA 进入函数,找出栈溢出漏洞. 又是这个位置的栈溢出,read的0x100,buf的0x88,根据提示,寻找构建ROP链的攻击 直接就找到了system和/bin/sh,开始写exp from pwn import * io = remote('111.200.241.244',56855) #连接远程 elf = ELF('./1ab77c073b4f45…
接下来我们回顾一下动态规划算法(DP)和蒙特卡罗方法(MC)的特点,对于动态规划算法有如下特性: 需要环境模型,即状态转移概率\(P_{sa}\) 状态值函数的估计是自举的(bootstrapping),即当前状态值函数的更新依赖于已知的其他状态值函数. 相对的,蒙特卡罗方法的特点则有: 可以从经验中学习不需要环境模型 状态值函数的估计是相互独立的 只能用于episode tasks 而我们希望的算法是这样的: 不需要环境模型 它不局限于episode task,可以用于连续的任务 本文介绍的时…
前言 训练神经网络模型时,如果训练样本较少,为了防止模型过拟合,Dropout可以作为一种trikc供选择.Dropout是hintion最近2年提出的,源于其文章Improving neural networks by preventing co-adaptation of feature detectors.中文大意为:通过阻止特征检测器的共同作用来提高神经网络的性能.本篇博文就是按照这篇论文简单介绍下Dropout的思想,以及从用一个简单的例子来说明该如何使用dropout. 基础知识:…
前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者: 一个处女座的程序猿 PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取 http://note.youdao.com/noteshare?id=3054cce4add8a909e784ad934f956cef tkinter应用案例—计算器简单功能 1.tkinter应用案例:设计一个简单计算器界面功能 #tkinter应用案例:设计一个简单计算器…