数据集中的异常数据通常被成为异常点.离群点或孤立点等,典型特征是这些数据的特征或规则与大多数数据不一致,呈现出“异常”的特点,而检测这些数据的方法被称为异常检测. 异常数据根据原始数据集的不同可以分为离群点检测和新奇检测: 离群点检测(Outlier Detection) 大多数情况我们定义的异常数据都属于离群点检测,对这些数据训练完之后再在新的数据集中寻找异常点. 新奇检测(Novelty Detection) 所谓新奇检测是识别新的或未知数据模式和规律的检测方法,这些规律和只是在已有机器学习…