网络不可能一直处于正常情况,因为Leader或者某个Follower有可能会崩溃,从而导致日志不能一直保持一致.因此存在以下三种情况: (1)Follower缺失当前Leader上存在的日志条目.(2)Follower存在当前Leader不存在的日志条目.(比如旧的Leader仅仅将AppendEntries RPC消息发送到一部分Follower就崩溃掉,然后新当选Leader的服务器恰好是没有收到该AppendEntries RPC消息的服务器)(3)Follower即缺失当前Leader上…
1.服务器的三种角色 Raft算法中服务器主要分为三种角色:Leader.Follower.Candidate,并且三种角色相互独立,也就是服务器在同一时间内只可能扮演其中一种角色. Leader:用于对所有用户的请求进行处理以及日志的复制等等.Follower:不会主动发送消息,只响应来自Leader与Candidate的请求.Candidate:用于选举新的Leader. 2.任期介绍 Raft 算法将时间划分成为任意不同长度的任期(term).任期用连续的数字进行表示.每一个任期的开始都是…
1.日志复制的过程 Leader选出后,就开始接收客户端的请求.Leader把请求作为日志条目(Log entries)加入到它的日志中,然后并行的向其他服务器发起 AppendEntries RPC 复制日志条目.当这条日志被复制到大多数服务器上,Leader将这条日志应用到它的状态机并向客户端返回执行结果. 客户端的每一个请求都包含被复制状态机执行的指令.Leader把这个指令作为一条新的日志条目添加到日志中,然后并行发起 RPC 给其他的服务器,让它们复制这条信息.假如这条日志被安全的复制…
分区容错如何保证? 在分布式系统设计中,需要遵循CAP理论,如果我们要让一个服务具有容错能力,那么最常用最直接的办法就是让一个服务的多个副本同时运行在不同的节点上.但是,当一个服务的多个副本都在运行的时候,我们如何保证它们的状态都是同步的呢,或者说,如果让客户端看起来无论请求发送到哪一个服务副本,最后都能得到相同的结果?实现这种同步方法就是所谓的状态机复制(State Machine Replication). 状态机复制的理论基础是:如果集群里的每一个节点上都运行着相同的确定性状态机S,并且所…
手绘raft算法 互联网技术窝 2019-04-07 12:06:05 在现实的分布式系统中,不能可能保证集群中的每一台机器都是100%可用可靠的,集群中的任何机器都可能发生宕机.网络连接等问题导致集群中的某个节点不可用,这样,那个节点的数据就有可能和集群不一致,所以需要有一种机制,来保证在大多数机器都存在的情况下向外提供可靠的数据服务.这里的大多数节点指的是集群半数以上的节点. raft算法就是一种在分布式系统中解决集群中多节点之间数据一致性的算法.Golang生态圈中大名鼎鼎的etcd就是使…
介绍 Fastify是一个高度专注于以最少开销和强大的插件架构,为开发人员提供最佳体验的Web框架. 它受到了 Hapi 和 Express 的启发,是目前最快的 Node 框架之一. Fastify 独特的将 JSON Schema 应用到请求时的 validation 和响应时的 serialization,作者写的 fast-json-stringify 包更是达到了 2x faster than JSON.stringify() 的神奇效果. 起步 安装 输入如下指令安装 fastify…
Fastify 系列教程: Fastify 系列教程一 (路由和日志) Fastify 系列教程二 (中间件.钩子函数和装饰器) Fastify 系列教程三 (验证.序列化和生命周期) Fastify 系列教程四 (请求对象.响应对象和插件) 介绍 Fastify是一个高度专注于以最少开销和强大的插件架构,为开发人员提供最佳体验的Web框架. 它受到了 Hapi 和 Express 的启发,是目前最快的 Node 框架之一. Fastify 独特的将 JSON Schema 应用到请求时的 va…
数据挖掘入门系列教程(二)之分类问题OneR算法 数据挖掘入门系列博客:https://www.cnblogs.com/xiaohuiduan/category/1661541.html 项目地址:GitHub 在上一篇博客中,我们通过分析亲和性来寻找数据集中数据与数据之间的相关关系.这篇博客我们会讨论简单的分类问题. 分类简介 分类问题,顾名思义我么就是去关注类别(也就是目标)这个变量.分类应用的目的是根据已知类别的数据集得到一个分类模型,然后通过这个分类模型去对类别未知的数据进行分类.这里有…
数据挖掘入门系列教程(三)之scikit-learn框架基本使用(以K近邻算法为例) 简介 scikit-learn 估计器 加载数据集 进行fit训练 设置参数 预处理 流水线 结尾 数据挖掘入门系列教程(三)之scikit-learn框架基本使用(以K近邻算法为例) 数据挖掘入门系列博客:https://www.cnblogs.com/xiaohuiduan/category/1661541.html 项目地址:GitHub 在上一篇博客中,我们使用了简单的OneR算法对Iris进行分类,在…
目录 数据挖掘入门系列教程(四点五)之Apriori算法 频繁(项集)数据的评判标准 Apriori 算法流程 结尾 数据挖掘入门系列教程(四点五)之Apriori算法 Apriori(先验)算法关联规则学习的经典算法之一,用来寻找出数据集中频繁出现的数据集合.如果看过以前的博客,是不是想到了这个跟数据挖掘入门系列教程(一)之亲和性分析这篇博客很相似?Yes,的确很相似,只不过在这篇博客中,我们会更加深入的分析如何寻找可靠有效的亲和性.并在下一篇博客中使用Apriori算法去分析电影中的亲和性.…