POJ 1286 Pólya定理】的更多相关文章

Necklace of Beads Description Beads of red, blue or green colors are connected together into a circular necklace of n beads ( n < 24 ). If the repetitions that are produced by rotation around the center of the circular necklace or reflection to the a…
Necklace of Beads Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9162   Accepted: 3786 Description Beads of red, blue or green colors are connected together into a circular necklace of n beads ( n < 24 ). If the repetitions that are pro…
题意:给你n种颜色和m个小球,问你有多少种不同的方案! 分析:作为模板.. 代码实现: #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> using namespace std; int n, m; int gcd(int a, int b) { b = b % a; while (b) { a = a % b;…
http://poj.org/problem?id=1286 题意:有红.绿.蓝三种颜色的n个珠子.要把它们构成一个项链,问有多少种不同的方法.旋转和翻转后同样的属于同一种方法. polya计数. 搜了一篇论文Pólya原理及其应用看了看polya究竟是什么东东.它主要计算所有互异的组合的个数.对置换群还是似懂略懂.用polya定理解决这个问题的关键是找出置换群的个数及哪些置换群,每种置换的循环节数.像这样的不同颜色的珠子构成项链的问题能够把N个珠子看成正N边形. Polya定理:(1)设G是p…
点我看题目 题意 :给你3个颜色的n个珠子,能组成多少不同形式的项链. 思路 :这个题分类就是polya定理,这个定理看起来真的是很麻烦啊T_T.......看了有个人写的不错: Polya定理: (1)设G是p个对象的一个置换群,用k种颜色突然这p个对象,若一种染色方案在群G的作用下变为另一种方案,则这 两个方案当作是同一种方案,这样的不同染色方案数为: : (2)置换及循环节数的计算方法:对于有n个位置的手镯,有n种旋转置换和n种翻转置换.对于旋转置换: c(fi) = gcd(n,i) …
点我看题目 题意 :给你c种颜色的n个珠子,问你可以组成多少种形式. 思路 :polya定理的应用,与1286差不多一样,代码一改就可以交....POJ 1286题解 #include <stdio.h> #include <iostream> #include <string.h> #include <math.h> #include <algorithm> using namespace std; int gcd(int a,int b) {…
题目链接:http://poj.org/problem?id=2409 题意: 有一串n个珠子穿起来的项链,你有k种颜色来给每一个珠子染色. 问你染色后有多少种不同的项链. 注:“不同”的概念是指无论怎样旋转或翻转项链,都与之前的不同. 题解: 本题用到了置换的相关知识: (1)Burnside引理: 等价类数目 = 所有C(f)的平均值 (C(f)为置换f的不动点数目) (2)置换f可以分解成m(f)个循环的乘积,假设涂k种颜色: C(f) = k^m(f) (3)Polya定理:(综上) 等…
题意: 给你三种颜色的珠子,每次给你N,问在旋转,翻转之后视作相同的情况下,能组成多少种不同的项链. 思路: 让我们借这道题拯救一下我对POLYA定理的理解... sigma(m^(gcd(i,n))) 以上是在旋转的时候计数的和,其中m是颜色的数量,n是项链的长度. 一下考虑翻转的情况: 当n是偶数的时候, 有n/2种情况循环节的数量是n/2+1,有n/2种情况是n/2. 当n是奇数的时候, 有n种情况是循环节的数量是n/2+1 别忘了最后要除以循环节总的种类数!!! 坑点: 这题n可能等于0…
  Description Beads of red, blue or green colors are connected together into a circular necklace of n beads ( n < ). If the repetitions that are produced by rotation around the center of the circular necklace or reflection to the axis of symmetry are…
题意 用k种颜色对n个珠子构成的环上色,旋转翻转后相同的只算一种,求不等价的着色方案数. 思路 Polya定理 X是对象集合{1, 2, --, n}, 设G是X上的置换群,用M种颜色染N种对象,则不同的染色方案数为: λ(g)表示置换g的轮换个数,且λ(g) = λ1(g) + λn(g) + -- + λn(g),其中λi(g)表示g中长度为i的轮换(循环)个数. 本题是对一个n个珠子的圆珠的颜色,而圆珠的置换群有: Ⅰ翻转:1.当n为奇数时,有n种翻转,每种翻转的轴都是一个顶点和该顶点对边…