$ \color{#0066ff}{ 题目描述 }$ LJJ 学完了二项式定理,发现这太简单了,于是他将二项式定理等号右边的式子修改了一下,代入了一定的值,并算出了答案. 但人口算毕竟会失误,他请来了你,让你求出这个答案来验证一下. 一共有 \(T\) 组数据,每组数据如下: 输入以下变量的值:\(n, s , a_0 , a_1 , a_2 , a_3\),求以下式子的值: \(\begin{aligned}\Large \left[ \sum_{i=0}^n \left( {n\choose…
QwQ LOJ #6485 题意 求题面中那个算式 题解 墙上暴利 设$ f(x)=(sx+1)^n$ 假设求出了生成函数$ f$的各项系数显然可以算出答案 因为模$ 4$的缘故只要对于每个余数算出次数模4为该余数的系数和即可 求系数和强上单位根反演即可 求模4余1相当于求模4余0之后平移一位即乘上$ x^{-1}$ 好像讲的非常不清楚啊... 代码 #include<ctime> #include<cmath> #include<cstdio> #include<…
题目:https://loj.ac/problem/6485 先把 \( a_{i mod 4} \) 处理掉,其实就是 \( \sum\limits_{i=0}^{3} a_{i} \sum\limits_{j=0}^{n} C_{n}^{j} * s^{j} * [4|(j-i)] \) 然后把 \( [4|(j-i)] \) 单位根反演,得到 \( \sum\limits_{i=0}^{3} a_{i} \sum\limits_{j=0}^{n} C_{n}^{j} * s^{j} * \…
题目:https://loj.ac/problem/6485 \( \sum\limits_{k=0}^{3}\sum\limits_{i=0}^{n}C_{n}^{i}s^{i}a_{k}[4|(i-k)] \) 然后就是套路即可. #include<cstdio> #include<cstring> #include<algorithm> #define ll long long using namespace std; ll rdn() { ll ret=;;ch…
题面 传送门 题解 首先你要知道一个叫做单位根反演的东西 \[{1\over k}\sum_{i=0}^{k-1}\omega^{in}_k=[k|n]\] 直接用等比数列求和就可以证明了 而且在模\(998244353\)意义下的\(\omega_k^1=g^{P-1\over k}\) 据说这玩意儿在\(NTT\)的证明里有?然而我那时候光顾着背板子了 所以这个单位根反演简称小单的玩意儿能干嘛呢 然后我们惊奇的发现小单可以让我们快速求一个数列里某个数倍数项的和 \[ \begin{align…
新学的黑科技,感觉好nb ~ #include <bits/stdc++.h> #define ll long long #define setIO(s) freopen(s".in","r",stdin) using namespace std; const ll mod=998244353; inline ll qpow(ll x,ll y) { ll tmp=1; x=x%mod; y=(y%(mod-1)+mod-1)%(mod-1); for(…
也许更好的阅读体验 \(\mathcal{Description}\) 原题链接 \(T\)组询问,每次给\(n,s,a_0,a_1,a_2,a_3\)求 \(\begin{aligned}\left(\sum ^{n}_{i=0}\begin{pmatrix} n \\ i \end{pmatrix}\cdot s^{i}\cdot a_{i\ mod\ 4}\right)mod\ 998244353\end{aligned}\) \(\mathcal{Solution}\) 这道题要用单位根…
前言 蒟蒻代码惨遭卡常,根本跑不过 前置芝士--单位根反演 单位根有这样的性质: \[ \frac{1}{n}\sum_{i=0}^{n-1}\omega_{n}^{ki}=\left[n|k\right] \] 所以可以得出单位根反演的式子 如果有\(f(x)=\sum_{i=0}a_ix^i\),就可以推出 \[ \sum_{i=0}^na_i\left[d|i\right]=\frac{1}{d}\sum_{p=0}^{d-1}f(\omega_d^p) \] 证明可以把上面的式子代入,然…
[LOJ#6485]LJJ 学二项式定理(单位根反演) 题面 LOJ 题解 显然对于\(a0,a1,a2,a3\)分开算答案. 这里以\(a0\)为例 \[\begin{aligned} Ans&=\frac{1}{4}a_0\sum_{i=0}^n [4|i]{n\choose i}s^i\\ &=\frac{1}{4}a_0\sum_{i=0}^n{n\choose i}s^i\sum_{j=0}^3 (\omega_4^{j})^i\\ &=\frac{1}{4}a_0\su…
LJJ 学二项式定理 题意 \(T\)组数据,每组给定\(n,s,a_0,a_1,a_2,a_3\),求 \[ \sum_{i=0}^n \binom{n}{i}s^ia_{i\bmod 4} \] 对\(998244353\)取模 范围 \(1\le T\le 10^5,1\le n\le 10^{18},1\le s,a_0,a_1,a_2,a_3\le 10^8\) 单位根反演有个套路 \[ [k\equiv l \ (\text{ mod } n)\ ]=\frac{1}{n}\sum_…
\(\mathcal{Description}\)   Link.   给定 \(n,s,a_0,a_1,a_2,a_3\),求: \[\sum_{i=0}^n\binom{n}is^ia_{i\bmod4}\bmod998244353 \]   多测,数据组数 \(\le10^5\),\(n\le10^{18}\),其余输入 \(\le10^8\). \(\mathcal{Solution}\)   单位根反演板题.记一个函数 \(f\) 有: \[\begin{aligned} f(x)&=…
题目描述: loj 题解: 单位根反演. $[n|x]=\frac{1}{n} \sum _{i=0}^{n-1} (ω_n^x)^i$ 证明?显然啊,要么停在$(1,0)$要么转一圈. 所以说题目要求的是$\sum _{i=0}^{n} C(n,i) * s^i * a_{i\;mod\;4}$ 把$a$提前,变成$\sum_{k=0}^{3}a_k \sum _{i=0} ^{n} C(n,i) *s^i [4|i-k]$ 然后把上面单位根反演式子套进去.后面变成$\sum _{i=0} ^…
题目 由于看到正解的单位根反演过于复杂 (也就是看不懂) 所以自己构造了一个算法,理论上这个算法应该还有成长的空间(可以变得普适性更强) 不知道和单位根反演有没有一样,就发表出来了 反正转载前记得要联系本人,联系方式参考 index [分析] 题目所求为 \(\displaystyle Ans=[\sum_{k=0}^nC_n^ks^ka_{(k\mod 4)}]\mod 998244353\) 为避免混淆,本文中(除代码)所有 \(i\) 均表明虚数的单位,即 \(i^2=-1\),而代码中的…
本文我们一起通过学习Vue模板编译原理(一)-Template生成AST来分析Vue源码.预计接下来会围绕Vue源码来整理一些文章,如下. 一起来学Vue双向绑定原理-数据劫持和发布订阅 一起来学Vue模板编译原理(一)-Template生成AST 一起来学Vue模板编译原理(二)-AST生成Render字符串 一起来学Vue虚拟DOM解析-Virtual Dom实现和Dom-diff算法 这些文章统一放在我的git仓库:https://github.com/yzsunlei/javascrip…
本文我们一起通过学习Vue模板编译原理(二)-AST生成Render字符串来分析Vue源码.预计接下来会围绕Vue源码来整理一些文章,如下. 一起来学Vue双向绑定原理-数据劫持和发布订阅 一起来学Vue模板编译原理(一)-Template生成AST 一起来学Vue模板编译原理(二)-AST生成Render字符串 一起来学Vue虚拟DOM解析-Virtual Dom实现和Dom-diff算法 这些文章统一放在我的git仓库:https://github.com/yzsunlei/javascri…
#101. 最大流 内存限制:512 MiB时间限制:5000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 这是一道模板题. 给定 n nn 个点,m mm 条边,给定每条边的容量,求从点 s ss 到点 t tt 的最大流. 输入格式 第一行四个整数 n nn.m mm.s ss.t tt.接下来的 m mm 行,每行三个整数 u uu.v vv.c cc,表示 u uu 到 v vv,流量为 c cc 的一条边. 输出格式…
题意:求\(\sum_{i_1=1}^m\sum_{i_2=1}^m...\sum_{i_n=1}^mgcd(i_1,i_2,...i_n)\) 题解:\(\sum_{d=1}^md\sum_{i_1=1}^m...\sum_{i_n=1}^m[(i_1,...i_n)==d]\) \(=\sum_{d=1}^md\sum_{i_1=1}^{\lfloor \frac{m}{d} \rfloor}...\sum_{i_n=1}^{\lfloor \frac{m}{d} \rfloor}\sum_…
题意 题目链接 Sol 反演套路题? 不过最后一步还是挺妙的. 套路枚举\(d\),化简可以得到 \[\sum_{T = 1}^m (\frac{M}{T})^n \sum_{d \ | T} d \mu(\frac{T}{d})\] 后面的显然是狄利克雷卷积的形式,但是这里\(n \leqslant 10^{11}\)显然不能直接线性筛了 设\(F(n) = n, f(n) = \phi(n)\) 根据欧拉函数的性质,有\(F(n) = \sum_{d \ | n} f(d)\) 反演一下 \…
开long long的最大流 #include<bits/stdc++.h> using namespace std; ;//点数的最大值 ;//边数的最大值 ; struct Edge { long long to,next,cap,flow; } edge[MAXM]; //注意是MAXM long long tol; long long head[MAXN]; long long gap[MAXN],dep[MAXN],cur[MAXN]; long long n, m, s, t; v…
第三波,走起~~ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ 单位根反演 今天打多校时 1002 被卡科技了--赛场上看出来是个单位根反演但不会,所以只好现学这东西了( 首先你得知道单位根是什么东西,对于 \(n\) 次方程 \(x^n-1=0(x\in\mathbb{C})\),在复数域上有 \(n\) 个根,其对应到复平面上就是单位圆的 \(n\) 等分点,我们将这些单位根从 \(x\) 轴正半轴开始顺时针依次…
数论ex 数学学得太差了补补知识点or复习 Miller-Rabin 和 Pollard Rho Miller-Rabin 前置知识: 费马小定理 \[ a^{p-1}\equiv 1\pmod p,p \ is \ prime \] 二次探测(mod奇素数下1的二次剩余) \[ x^2\equiv 1\pmod p\Rightarrow x=1 \ or \ p-1 \] 如果不是 \(\bmod\) 奇素数,二次剩余可能是更多的值 如果把费马小定理反过来用来检测一个数是否是素数,虽然是错的,…
大米饼正式退役了,OI给我带来很多东西 我会的数学知识基本都在下面了 博客园的评论区问题如果我看到了应该是会尽力回答的... 这也是我作为一个OIer最后一次讲课的讲稿 20190731 多项式乘法 FFT 基本概念 1.多项式的两种表达(拉格朗日插值法) 多项式:\(A(x) = \sum_{i=0}^{n-1}a_ix^i\),最高项次数为\(n-1\),次数界为\(n\) \((a_0,\cdots,a_{n-1})\)为多项式的系数表达, \((x_0,y_0),\cdots,(x_{n…
\(\mathcal{Preface}\)   单位根反演,顾名思义就是用单位根变换一类式子的形式.有关单位根的基本概念可见我的这篇博客. \(\mathcal{Formula}\)   单位根反演的公式很简单: \[[k|n]=\frac{1}k\sum_{i=0}^{k-1}\omega_k^{ni} \] \(\mathcal{Proof}\)   分类讨论: \(k|n\). 那么 \((\forall i)(\omega_k^{ni}=1)\),所以右侧为 \(\frac{1}k\su…
一道清真的数论题 LOJ #3058 Luogu P5293 题解 考虑$ n=1$的时候怎么做 设$ s$为转移的方案数 设答案多项式为$\sum\limits_{i=0}^L (sx)^i\binom{L}{i}=(sx+1)^L$ 答案相当于这个多项式模$ k$的各项系数的和 发现这和LJJ学二项式定理几乎一模一样 我上一题的题解 然而直接搞是$ k^2$的,无法直接通过本题 以下都用$ w$表示$ k$次单位根 设$ F_i$为次数模$ k$为$ i$的项的系数和 单位根反演一下得到$F…
我没想到居然就学到分块了...哇我还一直觉得分块听起来挺牛逼的一直想学的来着qwq(其实之前好像vjudge上有道题是用分块做的?等下放链接qwq 所以想着就写个学习笔记趴qwq 首先知道分块的时间复杂度 O(n√n) 发现分块其实就是个有优化的暴力? 肥肠暴力,,, 简单说下,就是分成√n块,然后大段的随便维护一下局部的随便朴素暴力掉就成了,, 哪里牛逼,,,浪费我感情QAQ 详细港下趴还是qwq 举个栗子好讲些qwq 假如给了一个包含n个数的序列a,请支持区间修改操作和区间查询操作 显然可以…
题目链接 今天终于学会了后缀数组模板qwq 不过只会模板emmmm 首先我们有一本蓝书emmmmmm 然后看到蓝书221页代码之后我就看不懂了 于是请出rqy rqy: 一开始那是个对单个字符排序的操作啊 c[i]表示值为i的字符有多少个 x[i]表示第i个位置的优先级是多少 sa[i]表示优先级是i的字符位置 然后第一行明显是初始化,第二行明显就是统计字符个数 至于第三行为什么要求前缀和呢 我们思考优先级越小的排的越靠前 所以说,设优先级是0的有c[0]个,优先级是1的有c[1]个,以此类推…
如果写过 LJJ 学二项式那道题的话这道题就不难了. #include <bits/stdc++.h> #define ll long long #define setIO(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) using namespace std; int K,bu[10000],G; ll Mod,N; struct M { ll a…
莫比乌斯反演学傻了$QwQ$ 思路:推式子? 提交:2次 错因:又双叒叕没开$long\space long$ 题解: $\sum_{i=1}^n gcd(i,n)$ $=\sum_{d|n}d\sum_{i=1}^{\frac{n}{d}} [gcd(i,\frac{n}{d})=1]$ 注意到$\sum_{i=1}^{\frac{n}{d}} [gcd(i,\frac{n}{d})=1]$就是与$\frac{n}{d}$互质的数的个数. $=\sum_{d|n}d\varphi(\frac{…
有一段时间没有更新技术博文了,因为这段时间埋下头来看Vue源码了.本文我们一起通过学习双向绑定原理来分析Vue源码.预计接下来会围绕Vue源码来整理一些文章,如下. 一起来学Vue双向绑定原理-数据劫持和发布订阅 一起来学Vue模板编译原理(一)-Template生成AST 一起来学Vue模板编译原理(二)-AST生成Render字符串 一起来学Vue虚拟DOM解析-Virtual Dom实现和Dom-diff算法 这些文章统一放在我的git仓库:https://github.com/yzsun…
差分数组 定义 百度百科中的差分定义 //其实这完全和要讲的没关系 qwq 进去看了之后是不是觉得看不懂? 那我简单概括一下qwq 差分数组de定义:记录当前位置的数与上一位置的数的差值. 栗子 容易发现的是,\(\sum_{j=1}^{i} b_j\)即代表\(a_i\) 的值. \((\sum\) 即代表累加.) 思想 看到前面的\(\sum\) 你一定会发现这是前缀和! 那你认为这是前缀和? 的确是qwq. 实际上这并不是真正意义上的前缀和. 前缀和的思想是 根据元素与元素之间的并集关系(…