Docker迁移学习及其他】的更多相关文章

起因: 有在一台服务器A上通过docker搭建git服务,由于某些原因需要将其迁移到另一台服务器B. 过程: 最终采用方式: 首先通过docker ps(-a) 查看目标容器,然后通过commit命令将其提价为一个镜像,通过save命令将镜像转换为文件,将该文件从A上转移到B上,B上需要已经安装docker,通过load命令将文件转换为镜像,然后通过run启动镜像即可. 用到的命令有: docker ps docker commit -m "提交信息" -a "指定作者&qu…
欢迎访问网易云社区,了解更多网易技术产品运营经验. 前言 最近几个月花了比较多精力在项目的测试环境Docker迁移上,从最初的docker"门外汉"到现在组里的同学(大部分测试及少数的开发)都可以熟练地使用docker环境开展测试工作,中间也积累了一些经验和踩过不少坑,借此2017复盘的机会,总结一下整个环境的搭建过程,希望可以给其他有志于向docker迁移的项目提供些许参考,同时也想跟其他docker的老司机们一起探讨改进方式. Docker迁移的必要性 这篇文章不对docker的基…
1. 前言 近些年来,随着以卷积神经网络(CNN)为代表的深度学习在图像识别领域的突破,越来越多的图像识别算法不断涌现.在去年,我们初步成功尝试了图像识别在测试领域的应用:将网站样式错乱问题.无线领域机型适配问题转换为"特定场景下的正常图片和异常图片的二分类问题",并借助Goolge开源的Inception V3网络进行迁移学习,重训练出对应场景下的图片分类模型,问题图片的准确率达到95%以上. 过去一年,我们在图片智能识别做的主要工作包括: 模型的落地和参数调优 模型的服务化 模型服…
研究docker有一段时间了,当然我主要的使用环境还是在Linux中,确实很方便. 但也有不少朋友希望使用Windows来工作学习,这里介绍一下在Windows中如何快速开始Docker的学习和体验吧 注意:由于docker原生只支持linux,所以使用Mac的用户,也需要跟Windows用户一样,采用一些额外的配置过程 注意:因为docker只支持64位的CPU,所以你的机器必须是64位的(而且要在BIOS里面启用虚拟化支持),Windows 7或者更高版本 1. 使用Docker Toolb…
在传统的机器学习的框架下,学习的任务就是在给定充分训练数据的基础上来学习一个分类模型:然后利用这个学习到的模型来对测试文档进行分类与预测.然而,我们看到机器学习算法在当前的Web挖掘研究中存在着一个关键的问题:一些新出现的领域中的大量训练数据非常难得到.我们看到Web应用领域的发展非常快速.大量新的领域不断涌现,从传统的新闻,到网页,到图片,再到博客.播客等等.传统的机器学习需要对每个领域都标定大量训练数据,这将会耗费大量的人力与物力.而没有大量的标注数据,会使得很多与学习相关研究与应用无法开展…
资源:http://www.cse.ust.hk/TL/ 简介: 一个例子: 关于照片的情感分析. 源:比如你之前已经搜集了大量N种类型物品的图片进行了大量的人工标记(label),耗费了巨大的人力物力,构建了源情感分类器(即输入一张照片,可以分析出照片的情感).注:这里的情感不是指人物的情感,而是指照片中传达出来的情感,比如这张照片是积极的还是消极的. 目标:因为不同类型的物品,他们在源数据集中的分布也是不同的,所以为了维护一个很好的分类器性能,经常需要增加新的物品.传统的方式是搜集大量N+1…
原文地址:http://blog.csdn.net/miscclp/article/details/6339456 在传统的机器学习的框架下,学习的任务就是在给定充分训练数据的基础上来学习一个分类模型:然后利用这个学习到的模型来对测试文档进行分类与预测.然而,我 们看到机器学习算法在当前的Web挖掘研究中存在着一个关键的问题:一些新出现的领域中的大量训练数据非常难得到.我们看到Web应用领域的发展非常快速.大量新的领域不断涌现,从传统的新闻,到网页,到图片,再到博客.播客等等.传统的机器学习需要…
迁移学习两种类型: ConvNet as fixed feature extractor:利用在大数据集(如ImageNet)上预训练过的ConvNet(如AlexNet,VGGNet),移除最后几层(一般是最后分类器),将剩下的ConvNet作为应用于新数据集的固定不变的特征提取器,输出特征称为CNN codes,如果在预训练网络上是经过ReLUd,那这些codes也要经过ReLUd(important for performance):提取出所有CNN codes之后,再基于新数据集训练一个…
机器学习策略-多任务学习 Learninig from multiple tasks 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.7 迁移学习 Transfer Learninig 神经网络可以从一个任务中习得知识,并将这些知识应用到另一个独立的任务中.例如:你已经训练好一个能够识别猫的系统,你利用这些知识或者这些知识的部分去完成更好的 阅读X射线扫描图. 这就是所谓的-- 迁移学习 how-to 假设你已经训练好一个图像识别神经网络,首先用一个神经网络,在(x,y)对上训练,其…
这是在kaggle上的一个练习比赛,使用的是ImageNet数据集的子集. 注意,mxnet版本要高于0.12.1b2017112. 下载数据集. train.zip test.zip labels 然后解压在data文件夹下 1. 数据 1.1 整理数据 将解压后的数据整理成Gluon能够读取的形式,这里我直接使用了zh.gluon.ai教程上的代码 导入各种库 import math import os import shutil from collections import Counte…
在前面的文章中,我们通常是拿到一个任务,譬如图像分类.识别等,搜集好数据后就开始直接用模型进行训练,但是现实情况中,由于设备的局限性.时间的紧迫性等导致我们无法从头开始训练,迭代一两百万次来收敛模型,所以这个时候迁移学习就派上用场了. 什么是迁移学习? 迁移学习通俗来讲,就是运用已有的知识来学习新的知识,核心是找到已有知识和新知识之间的相似性,用成语来说就是举一反三.由于直接对目标域从头开始学习成本太高,我们故而转向运用已有的相关知识来辅助尽快地学习新知识.比如,已经会下中国象棋,就可以类比着来…
说起来这门技术大多是秀的成分高于实际,但是呢,其也可以作为图像增强的工具,看到一些比赛拿他作训练集扩充,还是一个比较好的思路.如何在caffe上面实现简单的风格转化呢? 好像网上的博文都没有说清楚,而且笔者也没有GPU机器,于是乎,走上了漫漫的研究逼死自己之路... 作者实践机器配置: 服务器:ubuntu16.04(8 core)+caffe+only CPU 突然觉得楷体是不是好看多了...哈哈,接下来的博客要改字体喽~ ------------------------------ 一.图像…
上一篇博客[用tensorflow迁移学习猫狗分类]笔者讲到用tensorlayer的[VGG16模型]迁移学习图像分类,那麽问题来了,tensorlayer没提供的模型怎么办呢?别担心,tensorlayer提供了tensorflow中的[slim模型]导入功能,代码例子在tutorial_inceptionV3_tfslim. 那么什么是slim?slim到底有什么用?slim是一个使构建,训练,评估神经网络变得简单的库.它可以消除原生tensorflow里面很多重复的模板性的代码,让代码更…
笔者这几天在跟着莫烦学习TensorFlow,正好到迁移学习(至于什么是迁移学习,看这篇),莫烦老师做的是预测猫和老虎尺寸大小的学习.作为一个有为的学生,笔者当然不能再预测猫啊狗啊的大小啦,正好之前正好有做过猫狗大战数据集的图像分类,做好的数据都还在,二话不说,开撸. 既然是VGG16模型,当然首先上模型代码了: def conv_layers_simple_api(net_in): with tf.name_scope('preprocess'): # Notice that we inclu…
迁移学习基本概念 迁移学习是这两年比较火的一个话题,主要原因是在当前的机器学习中,样本数据的获取是成本最高的一块.而迁移学习可以有效的把原有的学习经验(对于模型就是模型本身及其训练好的权重值)带入到新的领域,从而不需要过多的样本数据,也能达到大批量数据所达成的效果,进一步节省了学习的计算量和时间. MobileNet V2是由谷歌在2018年初发布的一个视觉模型,在Keras中已经内置的并使用ImageNet完成了训练,可以直接拿来就用,这个我们在本系列第五篇中已经提过了.MobileNet V…
最近学习了TensorFlow,发现一个模型叫vgg16,然后搭建环境跑了一下,觉得十分神奇,而且准确率十分的高.又上了一节选修课,关于人工智能,老师让做一个关于人工智能的试验,于是觉得vgg16很不错,可以直接用. 但发现vgg16是训练好的模型,拿来直接用太没水平,于是网上发现说可以用vgg16进行迁移学习. 我理解的迁移学习: 迁移学习符合人们学习的过程,如果要学习一样新东西,我们肯定会运用或是借鉴之前的学习经验,这样能够快速的把握要点,能够快速的学习.迁移学习也是如此. vgg16模型是…
目录 一.例子:句子分类 二.模型架构 模型的输入 模型的输出 三.与卷积网络并行 四.嵌入表示的新时代 回顾一下词嵌入 ELMo: 语境的重要性 五.ULM-FiT:搞懂NLP中的迁移学习 六.Transformer:超越LSTM 七.OpenAI Transformer:为语言建模预训练一个Transformer解码器 八.在下游任务中使用迁移学习 九.BERT:从解码器到编码器 MLM语言模型 两个句子的任务 解决特定任务的模型 用于特征提取的BERT 十.把BERT牵出来遛一遛 本文翻译…
在介绍这一节之前,需要你对slim模型库有一些基本了解,具体可以参考第二十二节,TensorFlow中的图片分类模型库slim的使用.数据集处理,这一节我们会详细介绍slim模型库下面的一些函数的使用. 一 简介 slim被放在tensorflow.contrib这个库下面,导入的方法如下: import tensorflow.contrib.slim as slim 这样我们就可以使用slim了,既然说到了,先来了解tensorflow.contrib这个库,tensorflow官方对它的描述…
原文地址:http://blog.csdn.net/miscclp/article/details/6339456 在传统的机器学习的框架下,学习的任务就是在给定充分训练数据的基础上来学习一个分类模型:然后利用这个学习到的模型来对测试文档进行分类与预测.然而,我 们看到机器学习算法在当前的Web挖掘研究中存在着一个关键的问题:一些新出现的领域中的大量训练数据非常难得到.我们看到Web应用领域的发展非常快速.大量新的领域不断涌现,从传统的新闻,到网页,到图片,再到博客.播客等等.传统的机器学习需要…
关于国内Docker镜像,可以参考:Docker容器学习梳理--基础知识(2) 的Docker镜像使用. 如果我们需要在Docker环境下部署tomcat.redis.mysql.nginx.php等应用服务环境,有下面三种方法: 1)根据系统镜像创建Docker容器,这时容器就相当于是一个虚拟机,进入容器内部署应用环境. 然后将这种应用容器提交为新的镜像,最后基于这种新的应用镜像创建容器,创建时做好端口映射,就可以在外部访问这些应用了. 2)直接通过docker pull拉取别人提交好的tom…
使用Docker已有一段时间了,今天正好有空梳理下自己平时操作Docker时的一些命令和注意细节: Docker 命令帮助 $ sudo docker Commands: attach Attach to a running container --将终端依附到容器上 > 运行一个交互型容器 [root@localhost ~]# docker run -i -t centos /bin/bash [root@f0a02b473067 /]# > 在另一个窗口上查看该容器的状态 [root@l…
1.迁移学习 比如要训练一个放射科图片识别系统,但是图片非常少,那么可以先在有大量其他图片的训练集上进行训练,比如猫狗植物等的图片,这样训练好模型之后就可以转移到放射科图片上,模型已经从其他图片中学习到了低层的特征,可能会对当前训练系统产生帮助.但要保证其他图片的量很多. 对迁移的模型只要修改输出层,进行重新训练最后一层或者最后一两层的参数即可,或者还可以在最后层进行添加神经网络层. 任务A和B有相同的输入x; 对任务A比任务B有更多的数据: A的低层特征对学习B有帮助. 2 多任务学习 对于迁…
参考:登上<Cell>封面的AI医疗影像诊断系统:机器之心专访UCSD张康教授 Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning 2018-2-22 Cell 读<Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning> 没有问题就无法学习: 1. 文中的数据规模…
完全版见github:TransforLearning 零.迁移学习 将一个领域的已经成熟的知识应用到其他的场景中称为迁移学习.用神经网络的角度来表述,就是一层层网络中每个节点的权重从一个训练好的网络迁移到一个全新的网络里,而不是从头开始,为每特定的个任务训练一个神经网络. 假设你已经有了一个可以高精确度分辨猫和狗的深度神经网络,你之后想训练一个能够分别不同品种的狗的图片模型,你需要做的不是从头训练那些用来分辨直线,锐角的神经网络的前几层,而是利用训练好的网络,提取初级特征,之后只训练最后几层神…
解压文件命令: with zipfile.ZipFile('../data/kaggle_cifar10/' + fin, 'r') as zin: zin.extractall('../data/kaggle_cifar10/') 拷贝文件命令: shutil.copy(原文件, 目标文件) 一.整理数据 我们有两个文件夹'../data/kaggle_cifar10/train'和'../data/kaggle_cifar10/test',一个记录了文件名和类别的索引文件 我们的目的是在新的…
Sebastian Ruder 博士的答辩 PPT<Neural Transfer Learning for Natural Language Processing>介绍了面向自然语言的迁移学习的动机.研究现状.缺陷以及自己的工作. Sebastian Ruder 博士在 PPT 中阐述了使用迁移学习的动机: state-of-the-art 的有监督学习算法比较脆弱: 易受到对抗样本的影响 易受到噪音数据的影响 易受到释义的影响 现实中的自然语言处理面临着多领域.多语种上的多种类型的任务,为…
https://www.jqr.com/article/000225 这篇文章的目的是帮助新手和外行人更好地了解我们新论文,我们的论文展示了如何用更少的数据自动将文本分类,同时精确度还比原来的方法高.我们会用简单的术语进行解释自然语言处理.文本分类.迁移学习.语言建模.以及我们的方法是如何将这几个概念结合在一起的.如果你已经对NLP和深度学习很熟悉了,可以直接进入项目主页,查看相关技术信息:nlp.fast.ai/category/classification.html 简介 5月14日,我们发…
http://spaces.ac.cn/archives/3942/ 暑假期间做了一下百度和西安交大联合举办的核心实体识别竞赛,最终的结果还不错,遂记录一下.模型的效果不是最好的,但是胜在“端到端”,迁移性强,估计对大家会有一定的参考价值. 比赛的主题是“核心实体识别”,其实有两个任务:核心识别 + 实体识别.这两个任务虽然有关联,但在传统自然语言处理程序中,一般是将它们分开处理的,而这次需要将两个任务联合在一起.如果只看“核心识别”,那就是传统的关键词抽取任务了,不同的是,传统的纯粹基于统计的…
引自:http://blog.csdn.net/sinat_26917383/article/details/72982230 之前在博客<keras系列︱图像多分类训练与利用bottleneck features进行微调(三)>一直在倒腾VGG16的fine-tuning,然后因为其中的Flatten层一直没有真的实现最后一个模块的fine-tuning. 看到github上有一份InceptionV3的fine-tuning并且可以实现. 我看到的keras微调的方式分为以下两种: fin…
一.Docker的安装和启动 使用环境centos7 yum包更新到最新 sudo yum update 安装需要的软件包,yum-util提供yum-config-manager功能 sudo yum install -y yum-utils device-mapper-persistent-data lvm2 设置yum源为阿里云 sudo yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/cent…