题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3915 题目大意是给了n个堆,然后去掉一些堆,使得先手变成必败局势. 首先这是个Nim博弈,必败局势是所有xor和为0. 那么自然变成了n个数里面取出一些数,使得xor和为0,求取法数. 首先由xor高斯消元得到一组向量基,但是这些向量基是无法表示0的. 所以要表示0,必须有若干0来表示,所以n-row就是消元结束后0的个数,那么2^(n-row)就是能组成0的种数. 对n==row特判一下. 代码:…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5536 题目大意是给了一个序列,求(si+sj)^sk的最大值. 首先n有1000,暴力理论上是不行的. 此外题目中说大数据只有10组,小数据最多n只有100.(那么c*n^2的复杂度应该差不多) 于是可以考虑枚举i和j,然后匹配k. 于是可以先把所有s[k]全部存进一个字典树, 然后枚举s[i]和s[j],由于i.j.k互不相等,于是先从字典树里面删掉s[i]和s[j],然后对s[i]+s[j]这个…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3949 题目大意是给n个数,然后随便取几个数求xor和,求第k小的.(重复不计算) 首先想把所有xor的值都求出来,对于这个规模的n是不可行的. 然后之前有过类似的题,求最大的,有一种方法用到了线性基. 那么线性基能不能表示第k大的呢? 显然,因为线性基可以不重复的表示所有结果.它和原数组是等价的. 对于一个满秩矩阵 100000 010000 001000 000100 000010 000001…
题目链接:http://acm.uestc.edu.cn/#/problem/show/1219 题目大意是给了一张图,然后要求一个点通过路径回到这个点,使得xor和最大. 这是CCPC南阳站的一道题.当时只读了题目发现并不会. 这是一个典型的xor高斯消元. 需要预先dfs出所有的独立回路. 然后线性组合独立回路的xor和,使得ans最大. 最近做过类似的题目,直接粘代码. 代码: 方法一:线性基(O(63n)) #include <iostream> #include <cstdio…
题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=275 这是一道xor高斯消元. 题目大意是给了n个数,然后任取几个数,让他们xor和最大. 首先根据题目意思可以列出下列方程组: //a11x1+a21x2……=d[1] //a12x1+a22x2……=d[2] //... (每个数二进制按列来写,xi为0或1,表示取或不取这个数.) 结果的二进制即为d数组. 由于需要结果最大,而结果最多是d全为1,那么就假设所有d均为1,然后进行高斯消…
Zhu and 772002 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5833 Description Zhu and 772002 are both good at math. One day, Zhu wants to test the ability of 772002, so he asks 772002 to solve a math problem. But 772002 has a appointment with his g…
http://acm.hdu.edu.cn/showproblem.php?pid=5955 题意:给你长度为l的n组数,每个数1-6,每次扔色子,问你每个串第一次被匹配的概率是多少 题解:先建成ac自动机构造fail数组,然后因为fail指针可能向前转移所以不能不能直接递推dp,需要高斯消元解方程,对于节点i,假设不是结束点而且能转移到它的点有a1,a2...an,那么dp[i]=1/6*dp[a1]+1/6*dp[a2]+...+1/6*a[n],然后我们可以列出n个方程,高斯消元然后找到每…
题目大意:给定一个数组,求这些数组通过异或能得到的数中的第k小是多少 首先高斯消元求出线性基,然后将k依照二进制拆分就可以 注意当高斯消元结束后若末尾有0则第1小是0 特判一下然后k-- 然后HDU输出long long是用%I64d 不管C艹还是G艹都是 #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define M 10100 using namesp…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5512 学习菊苣的博客,只粘链接,不粘题目描述了. 题目大意就是给了初始的集合{a, b},然后取集合里的两个元素进行加或者减的操作,生成新的元素.问最后最多能生成多少个元素.问答案的奇偶性. 首先一开始有a, b.那么如果生成了b-a(b>a),自然原来的数同样可以由b-a, a生成(b != 2a). 于是如此反复下去,最后的数必然是可以由两个数p, 2p生成的. 于是所有的数肯定可以表示成xp+…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5534 题目大意是给了n个结点,让后让构成一个树,假设每个节点的度为r1, r2, ...rn,求f(x1)+f(x2)+...+f(xn)的最大值. 首先由于是树,所以有n-1条边,然后每条边连接两个节点,所以总的度数应该为2(n-1). 此外每个结点至少应该有一个度. 所以r1+r2+...rn = 2n-2.ri >= 1; 首先想到让ri >= 1这个条件消失: 令xi = ri,则x1+x…