c++的检测的确比C++更严格】的更多相关文章

见下面代码 #include <stdio.h> #include <stdlib.h> #include <time.h> enum guess { paper, scissors, rock, }; int main(void) { ; enum guess man; //int pc = 2; //int man; int tmp; tmp = ; man = tmp % ; ); printf("%d\n", (man-pc)); print…
此示例演示如何使用名为“更快r-cnn(具有卷积神经网络的区域)”的深度学习技术来训练对象探测器. 概述 此示例演示如何训练用于检测车辆的更快r-cnn对象探测器.更快的r-nnn [1]是r-cnn [2]和快速r-nnn [3]对象检测技术的引伸.所有这三种技术都使用卷积神经网络(cnn).它们之间的区别在于它们如何选择要处理的区域以及如何对这些区域进行分类.r-cnn和快速r-概算在运行美国有线电视新闻网之前使用区域建议算法作为预处理步骤.提议算法通常是技术例如edgox [4]或选择性搜…
作者:蒋天园 Date:2020-04-18 来源:3D-VID:基于LiDar Video信息的3D目标检测框架|CVPR2020 Brief paper地址:https://arxiv.org/pdf/2004.01389.pdf code地址:https://github.com/yinjunbo/3DVID 这是一篇来自北理工和百度合作的文章,目前还未开源,只有项目地址,2020年3月份放置在arxiv上,已经被CVPR2020接收:从标题我们猜测该文采用的时空信息将多帧的点云信息融合做…
UI贴图在游戏中内存大小中占的分量非常非常大,尤其对于前期对UI没有规划的项目,无论是包量还是内存大小都是需要花费很多时间去优化.如果涉及到战斗场景和逻辑场景的情况下,常用的做法就是把两个场景使用的atlas严格的分离开,这样可以减少运行时内存,特别是在战斗中,内存增加的比较厉害.OK,如果项目前期这方面的事情考虑比较周全.规则比较详细.执行也比较到位,后期可能就做这个事情就比较简答.那如果出现战斗中引用不该有的atlas怎么办?UI太多的情况下,逐个排除太麻烦,尤其是不在UI中,只是静态引进的…
前面介绍的R-CNN系的目标检测采用的思路是:首先在图像上提取一系列的候选区域,然后将候选区域输入到网络中修正候选区域的边框以定位目标,对候选区域进行分类以识别.虽然,在Faster R-CNN中利用RPN网络将候选区域的提取以放到了CNN中,实现了end-to-end的训练,但是其本质上仍然是提取先提取候选区域,然后对候选区域识别,修正候选区域的边框位置.这称为tow-stage的方法,虽然在精度已经很高了,但是其速度却不是很好.造成速度不好的主要原因就是候选区域的提取,这就需要一种网络能够直…
一.概述 前面一个系列,我们对车牌识别的相关技术进行了研究,但是车牌识别相对来说还是比较简单的,后续本人会对人脸检测.人脸识别,人脸姿态估计和人眼识别做一定的学习和研究.其中人脸检测相对来说比较简单,譬如Dlib库中直接封装了现成的库函数 frontal_face_detector 供相关人员使用,但是Dlib的运行速率并不是很高,另外于仕琪老师的 libfaceDetection 库具有较高的识别率和相对较快的运行速度,具体可以从github 上获取 https://github.com/Sh…
1. cv2.cvtcolor(img, cv2.COLOR_BGR2GRAY) # 将彩色图转换为灰度图 参数说明: img表示输入的图片, cv2.COLOR_BGR2GRAY表示颜色的变换形式 2. cv2.findContours(img,mode, method)  # 找出图中的轮廓值,得到的轮廓值都是嵌套格式的 参数说明:img表示输入的图片,mode表示轮廓检索模式,通常都使用RETR_TREE找出所有的轮廓值,method表示轮廓逼近方法,使用NONE表示所有轮廓都显示 3.…
原文链接:http://blog.csdn.net/myarrow/article/details/51878004 1. 基本概念 1)CNN:Convolutional Neural Networks 2)FC:Fully Connected 3)IoU:Intersection over Union (IoU的值定义:Region Proposal与Ground Truth的窗口的交集比并集的比值,如果IoU低于0.5,那么相当于目标还是没有检测到) 4)ICCV:Internationa…
论文:Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks 论文链接:https://arxiv.org/abs/1604.02878 官方代码链接:https://github.com/kpzhang93/MTCNN_face_detection_alignment 其他代码实现(MXNet):https://github.com/pangyupo/mxnet_mtcnn_face…
话题 3: 基于深度学习的二进制恶意样本检测 分享主题:全球正在经历一场由科技驱动的数字化转型,传统技术已经不能适应病毒数量飞速增长的发展态势.而基于沙箱的检测方案无法满足 APT 攻击的检测需求,也受到多种反沙箱技术的干扰.在充分考察过各种技术方案的优劣后,瀚思科技开发出了基于深度学习的二进制病毒样本检测技术,可以做到沙箱同等水平的 99% 的检测准确率,而误报率低于 1/1000.基于深度学习的病毒检测技术无需沙箱环境,直接将样本文件转换为二维图片,进而应用改造后的卷积神经网络 Incept…
引文 ​ 最近笔者也在寻找目标检测的其他方向,一般可以继续挖掘的方向是从目标检测的数据入手,困难样本的目标检测,如检测物体被遮挡,极小人脸检测,亦或者数据样本不足的算法.这里笔者介绍一篇小样本(few-shot)数据方向下的域适应(Domain Adaptation)的目标检测算法,这篇新加坡国立大学&华为诺亚方舟实验室的paper<Few-shot Adaptive Faster R-CNN>被收录于CVPR2019,解决的具体问题场景是我们有在普通常见场景下的汽车目标检测,我们只有…
计算机视觉中的目标检测,因其在真实世界的大量应用需求,比如自动驾驶.视频监控.机器人视觉等,而被研究学者广泛关注.   上周四,arXiv新出一篇目标检测文献<Object Detection in 20 Years: A Survey>,其对该领域20年来出现的技术进行了综述,这是一篇投向PAMI的论文,作者们review了400+篇论文,总结了目标检测发展的里程碑算法和state-of-the-art,并且难能可贵的对算法流程各个技术模块的演进也进行了说明,还深入到目标检测的特定领域,如人…
1.介绍 目标检测是指任意给定一张图像,判断图像中是否存在指定类别的目标,如果存在,则返回目标的位置和类别置信度 如下图检测人和自行车这两个目标,检测结果包括目标的位置.目标的类别和置信度 因为目标检测算法需要输出目标的类别和具体坐标,因此在数据标签上不仅要有目标的类别,还要有目标的坐标信息 可见目标检测比图像分类算法更复杂.图像分类算法只租要判断图像中是否存在指定目标,不需要给出目标的具体位置:而目标检测算法不仅需要判断图像中是否存在指定类别的目标,还要给出目标的具体位置 因此目标检测算法实际…
霍夫圆变换原理 霍夫圆变换的基本原理与霍夫线变换(https://www.cnblogs.com/bjxqmy/p/12331656.html)大体类似. 对直线来说,一条直线能由极径极角(r,θ)表示,而对于圆来说,我们需要三个参数:圆心(a,b),半径 r. 笛卡尔坐标系中圆的方程为: 化简便可得到: 对于(x0,y0),我们可以将通过这一点的所有圆统一定义为: a = x0 - r·cosθ b = y0 - r·sinθ 这就意味着每一组(a,b,r)代表一个通过点   的圆. 对于一个…
小学生都能用的编程语言 2020的春季中小学受疫情影响,一直还没有开学,孩子宅在家说想做一个学校要求的研究项目,我就说你做一个怎么样通过编程来学习数学的小项目吧,用最简单的计算机语言来解决小学数学问题.虽然我是一个老码农,但一直不赞成教小学生学编程,觉得这是揠苗助长,小学生不应该过早的固化逻辑思维而放松形象思维,某些少儿编程机构居然教学C++游戏编程,我觉得这真是在摧残祖国的花朵.现在孩子宅在家 ,想让他学点什么好几次冒出学编程的想法都被自己给否决了,直到我看到数学老师要求同学们整理小学阶段的数…
大家好,上期分享了电脑端几个免费无广告且实用的录屏软件,这期想给大家来讲解YOLO这个算法,从零基础学起,并最终学会YOLOV3的Pytorch实现,并学会自己制作数据集进行模型训练,然后用自己训练好的模型进行预测. 话不多说,先上我用VisDrone数据集进行训练的效果图: 在正式制作数据集进行模型训练之前,还是向大家介绍一下YOLO的来源以及其作用效果,我想你们也并不只是想单纯按步骤跑起来这么简单吧,换了一下样子,到时候又不会了,所以重要的是自己能够理解这其中的原理,让我们一起来学习了解一下…
1. 基本要求 从直观理解,一个目标检测网络性能好,主要有以下表现: 把画面中的目标都检测到--漏检少 背景不被检测为目标--误检少 目标类别符合实际--分类准 目标框与物体的边缘贴合度高-- 定位准 满足运行效率的要求--算得快 下图是从 Tensorflow Object Detection API 的 Model Zoo 中截取的部分模型列表. 算得快这一点通过 Speed 来体现.而其他因素,使用了mAP (mean average Precision) 这一个指标来综合体现. mean…
随着 Visual Studio 16.9 的发布,Visual Studio 中的检测分析变得更好用了.本文介绍我们新的动态分析工具.这个工具显示了函数被调用的确切次数,并且比我们以前的静态检测工具要快.它还支持. NET Core,而不需要 PDB. 尝试下 在 Visual Studio 中,你可以通过 Debug -> Performance Profiler 或者 Alt-F2 启动性能分析器.进入 summary 页面后,选择 Instrumentation 复选框. 在分析方面,有…
目标检测中特征融合技术(YOLO v4)(上) 论文链接:https://arxiv.org/abs/1612.03144 Feature Pyramid Networks for Object Detection Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, Serge Belongie PANet(Path Aggregation Network) 论文地址: https://arxiv.o…
引言 机器视觉中缺陷检测分为一下几种: blob分析+特征 模板匹配(定位)+差分:halcon--缺陷检测常用方法总结(模板匹配(定位)+差分) - 唯有自己强大 - 博客园 (cnblogs.com) 光度立体:halcon--缺陷检测常用方法总结(光度立体) - 唯有自己强大 - 博客园 (cnblogs.com) 特征训练 测量拟合:halcon--缺陷检测常用方法总结(测量拟合) - 唯有自己强大 - 博客园 (cnblogs.com) 频域+空间域结合:halcon--缺陷检测常用方…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-detail/272 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为 斯坦福CS231n <深度学习与计算机视觉(Deep Learning for Computer Vision)>的全套学习笔记,对应的课程视频可以在 这里 查看.更多资料获取方式见文末…
来自:http://deeplearning.net/software/theano/tutorial/using_gpu.html using the GPU 想要看GPU的介绍性的讨论和对密集并行计算的使用,查阅:GPGPU. theano设计的一个目标就是在一个抽象层面上进行特定的计算,所以内部的函数编译器需要灵活的处理这些计算,其中一个灵活性体现在可以在显卡上进行计算. 当前有两种方式来使用gpu,一种只支持NVIDIA cards (CUDA backend) :另一种,还在开发中,可…
即将进入涉及大量数学知识的阶段,先读下“别人家”的博文放松一下. 读罢该文,基本能了解面部识别领域的整体状况. 后生可畏. 结尾的Google Facenet中的2亿数据集,仿佛隐约听到:“你们都玩儿蛋去吧”. 长文干货!走近人脸检测:从 VJ 到深度学习(上) 长文干活!走进人脸检测:从 VJ 到深度学习(下) Ello 戏说系列 人脸识别简史与近期发展 人脸检测的开始和基本流程 具体来说,人脸检测的任务就是判断给定的图像上是否存在人脸, 如果人脸存在,就给出全部人脸所处的位置及其大小.由于人…
关于Tcp封包 很多朋友已经对此作了不少研究,也花费不少心血编写了实现代码和blog文档.当然也充斥着一些各式的评论,自己看了一下,总结一些心得. 首先我们学习一下这些朋友的心得,他们是: http://blog.csdn.net/stamhe/article/details/4569530 http://www.cppblog.com/tx7do/archive/2011/05/04/145699.html //……………… 当然还有太多,很多东西粘来粘区也不知道到底是谁的原作,J 看这些朋友…
即将进入涉及大量数学知识的阶段,先读下“别人家”的博文放松一下. 读罢该文,基本能了解面部识别领域的整体状况. 后生可畏. 结尾的Google Facenet中的2亿数据集,仿佛隐约听到:“你们都玩儿蛋去吧”. 长文干货!走近人脸检测:从 VJ 到深度学习(上) 长文干活!走进人脸检测:从 VJ 到深度学习(下) Ello 戏说系列 人脸识别简史与近期发展 人脸检测的开始和基本流程 具体来说,人脸检测的任务就是判断给定的图像上是否存在人脸, 如果人脸存在,就给出全部人脸所处的位置及其大小.由于人…
遇到OutOfMemoryException异常了 2008-11-28 09:52 asp.net做的售后服务系统运行了快1年了,昨天在做全年数据导出的时候出现OutOfMemoryException异常,数据量大约50M.50M应该不是很大,放在数据库里也就几万条(表字段很多).IIS6的应用程序池的设置是默认的.不知道为什么这样,本机测试的时候是没有这个问题的.估计问题的原因在于:1.程序中内存控制问题:2.服务器内存回收的问题.据说IIS6最多能用800M的内存,如果IIS设置的内存超过…
第二周:机器学习策略(2)(ML Strategy(2)) 误差分析(Carrying out error analysis) 你好,欢迎回来,如果你希望让学习算法能够胜任人类能做的任务,但你的学习算法还没有达到人类的表现,那么人工检查一下你的算法犯的错误也许可以让你了解接下来应该做什么.这个过程称为错误分析,我们从一个例子开始讲吧. 假设你正在调试猫分类器,然后你取得了 90% 准确率,相当于 10% 错误,,在你的开发集上做到这样,这离你希望的目标还有很远.也许你的队员看了一下算法分类出错的…
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的文章,个人非常喜欢,也列出来了. 33. SIFT关于SIFT,实在不需要介绍太多,一万多次的引用已经说明问题了.SURF和PCA-SIFT也是属于这个系列.后面列出了几篇跟SIFT有关的问题.[1999 ICCV] Object recognition from local scale-invar…
Theano之使用GPU 英文版本:http://deeplearning.net/software/theano/tutorial/using_gpu.html          using the GPU 想要看GPU的介绍性的讨论和对密集并行计算的使用,查阅:GPGPU. theano设计的一个目标就是在一个抽象层面上进行特定的计算,所以内部的函数编译器需要灵活的处理这些计算,其中一个灵活性体现在可以在显卡上进行计算. 当前有两种方式来使用gpu,一种只支持NVIDIA cards (CU…
转发: https://blog.csdn.net/pi9nc/article/details/17165171 为什么TCP 会粘包 前几天,调试mina的TCP通信, 第一个协议包解析正常,第二个数据包不完整.为什么会这样吗,我们用mina这样通信框架,还会出现这种问题? 带者问题,我们先分析一下问题.  提到通信, 我们面临都通信协议,数据协议的选择. 通信协议我们可选择TCP/UDP: TCP(transport control protocol,传输控制协议)是面向连接的,面向流的,提…