Roadmap Decision Tree Hypothesis Decision Tree Algorithm Decision Tree Heuristics in C&RT Decision Tree in Action Summary…
[机器学习]决策树(decision tree) 学习笔记 标签(空格分隔): 机器学习 决策树简介 决策树(decision tree)是一个树结构(可以是二叉树或非二叉树).其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别.使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果. 本文采用的是ID3算法,ID3算法就是在每次需要分裂时,计算每…
这里先再次提出我们利用aggregation获取更好性能的Hypothesis G所涉及的方法:blending,就是在得到g_set之后进行融合:learning呢?就是在线online的获取g并融合.以下就是关于整个aggregation所涉及到的方法总结: 当中Bagging.AdaBoost我们都已经探讨.它们各自是基于uniform(voting / average)和non-uniform(linear)的aggregation type,那么以下就開始介绍一个基于condition…
这是我们已经学到的(除Decision Tree外) 下面是一个典型的decision tree算法,有四个地方需要我们选择: 接着介绍了一个CART算法:通过decision stump分成两类,衡量子树的标准是,将数据分成两类后,这两类数据的纯度(purifying). 下面是不纯度的衡量: 最后是什么时候停下来: decision tree可能overfitting,需减小Ein和叶子的数目(表示树的复杂度) 如果缺少某一特征的话,可找一替代特征: 将CART和Adaboost进行对比:A…
决策树 -- 简介         决策树(decision tree)一般都是自上而下的来生成的.每个决策或事件(即自然状态)都可能引出两个或多个事件,导致不同的结果,把这种决策分支画成图形很像一棵树的枝干,故称决策树. 决策树是一种有监管学习的分类方法.决策树的生成算法有 ID3 .C4.5 和 CART(Classification And Regression Tree)等,CART的分类效果一般优于其他决策树.         决策树的决策过程需要从决策树的根节点开始,待测数据与决策树…
Roadmap Decision Tree Hypothesis Decision Tree Algorithm Decision Tree Heuristics in C&RT Decision Tree in Action Summary…
本文主要基于台大林轩田老师的机器学习技法课程中关于使用融合(aggregation)方法获得更好性能的g的一个总结.包含从静态的融合方法blending(已经有了一堆的g,通过uniform:voting/average.non-uniform:linear/non-linear和condition的融合形式来获取更好地性能).动态融合方法learning(没有一堆的g set,而是通过online learning获取g,边学习g,变边进行融合,对照于blending中的uniform融合形式…
首先沿着上节课的AdaBoost-Stump的思路,介绍了Decision Tree的路数: AdaBoost和Decision Tree都是对弱分类器的组合: 1)AdaBoost是分类的时候,让所有的弱分类器同时发挥作用 2)Decision Tree是每次根据condition让某个弱分类器发挥作用 林强调了一点,Decision Tree很多套路都是前人的insights,觉得这用好就这样处理了,没有那么完备的理论保证. 从递回的角度,可以这样看Decision Tree: Decisi…
Roadmap Adaptive Boosted Decision Tree Optimization View of AdaBoost Gradient Boosting Summary of Aggregation Models Summary…
Roadmap Adaptive Boosted Decision Tree Optimization View of AdaBoost Gradient Boosting Summary of Aggregation Models Summary…