sgu208:Toral Tickets(Pólya定理)】的更多相关文章

题意简述:给你N和M,对于一个N∗M的单面方格纸你能够对它的每 个个格子黑白染色.然后把方格纸的长边卷起来,卷成一个圆柱体,然后再把 两个短边形成的圆也接起来.形成一个游泳圈的形状(我们染的色仅仅在游泳圈 的外表面).假设对于两种黑白染色方案.通过卷成这种游泳圈后,是一样 的.则这两种方案也是一样的.给定N,M<=20.求染色方案总数. 分析: 首先我们得会Pólya定理,參见http://wenku.baidu.com/view/bf92a95f804d2b160b4ec0be.html 依据…
208. Toral Tickets time limit per test: 0.25 sec. memory limit per test: 65536 KB input: standard output: standard On the planet Eisiem passenger tickets for the new mean of transportation are planned to have the form of tores. Each tore is made of a…
gi为一个为一个置换 c(g),为c(g)的轮换的数量 (循环的数量) 太监了…
感觉这两个东西好鬼畜= = ,考场上出了肯定不会qwq.不过还是学一下吧用来装逼也是极好的 群的定义 与下文知识无关.. 给出一个集合$G = \{a, b, c, \dots \}$和集合上的二元运算"$*$",并满足 (1).封闭性:$\forall a, b \in G, \exists c \in G, a * b = c$ (2).结合律:$\forall a, b, c \in G, (a * b) * c = a * (b * c)$ (3).单位元:$\exists e…
题目链接:Cards 听说这道题是染色问题的入门题,于是就去学了一下\(Bunside\)引理和\(P\acute{o}lya\)定理(其实还是没有懂),回来写这道题. 由于题目中保证"任意多次洗牌都可用这\(m\)种洗牌法中的一种代替",于是有了封闭性. 结合律显然成立. 题目中还保证了"对每种洗牌法,都存在一种洗牌法使得能回到原状态",逆元也有了. 只剩下一个单位元,我们手动补上.单位元就是不洗牌. 所以所有的洗牌方案构成了一个置换群.于是就可以用$Bunsid…
Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4255  Solved: 2582[Submit][Status][Discuss] Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法…
本来下午想把pre稿子写了,咕咕咕. 群论是啥也不会了,写个polya试试(手动doge)为什么博客媛没有emoji,以后万一自己搭博客一定要加上这个小东西 polya淼题:poj1286 先复吸一下polya 本来有这么个burnside引理,为什么叫引理呢,因为polya的证明引用了这个小可爱. 正经人谁好好写公式,(其实是不会群论的正规表达方式) 比如说从前有这么个置换群$F = \{ f_i , i \in Z and 1\le i \le n_F \} $ 其中 $n_F = \| F…
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; int jc[100003]; int p; int ipow(int x, int b) { ll t = 1, w = x;…
Mittag-Leffler定理    设$D\subset\mathbb C$为区域,而$\{a_{n}\}$为$D$中互不相同且无极限点的点列,那么对于任意给定的一列自然数$\{k_{n}\}$,定义函数$$\psi_{n}(z)=\sum_{j=1}^{k_{n}}\frac{c_{n,j}}{(z-a_{n})^j},n\in\mathbb N$$ 则必存在$D$上的亚纯函数$f(z)$使得$f$以$\{a_{n}\}$为其极点集,且在每个$a_{n}$附近的Laurent展开式的主要部…
转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合,G为Sn的置换群,C为Sn的着色集.那么我们等于是要求C中有多少种着色方案是不等价的.定义两种着色等价的概念:如果对于在C中的两种着色c1.c2,存在置换f使得f*c1=c2,那么c1和c2就是等价的.要想求不等价着色的个数,我们要先证明一个定理,即:         Burnside定理:设G(c…