第二周编程作业:Linear Regression 分为单一变量和多变量,假想函数为:hθ(x)=θ0+θ1x1+θ2x2+θ3x3+⋯+θnxn.明显已经包含单一变量的情况,所以完成多变量可以一并解决单一变量问题. 其中,需要注意的地方: Feature normalization中,sigma是均方误差(标准差).mu是某一列feature的平均值. 代码包上传到gitlab,所有问题的公式都在:coursera的lecture上. 最终结果:Nice work!…
Anomaly Detection and Recommender Systems 本周编程作业分为两部分:异常检测和推荐系统. 异常检测:本质就是使用样本的到特种值的gaussian分布,来预估正确的特征值的范围.对于一些特殊情况可以使用,多元高斯分布. 要注意该方法与监督学习的不同的适用性特征. 推荐系统:本例程中使用了,预测用户对不同类型的电影评分来给用户推荐电影. 代码在gitlab.…
编程作业: Neural Network Learning 源码上传到gitlab. 对于神经网络的理解也都在源码注释里面了,感兴趣可以看看.…
第四周 编程作业: Multi-class Classification and Neural Networks 这周作业与上一周有许多相同的部分,比如longistic regression中的lrCostfunction函数 求costJ和gradient.要求向量化! insist it!…
第三周编程作业:Logistic Regression 代码包在gitlab上:https://gitlab.com/luntai/Machine_Learning…
这周的编程作业主要是两方面内容. 1.K-means聚类. 2.PCA(Principle Component Analys)主成分分析. 方式主要是通过对图像的聚类实现压缩图像,后来发现PCA也可以通过对主特征值的提取实现压缩图像的目的.很有意思,具体的内容参见本分类中的另外两篇博文,图像压缩方法. 代码在gitlab上,笔记在代码和pdf上.…
Regularized Linear Regression and Bias/Variance 大多数时候,我们使用机器学习方法得到的结果都不是特别理想,常见 欠拟合 和 过拟合 问题.通过一些变量画出相关的图像,能够帮助理解程序中存在的问题(复杂的算法用在大规模的数据集上,结果往往难以预测). 同样,可以使用这些图像来确定一些参数,来得到更准确的结果.比如,通过 validation curve的到了更合适的 lamda值. 其实前半部分,相当于复习了之前几次作业的线性拟合和多项式非线性拟合.…
Support Vector Machines I have some issues to state. First, there were some bugs in original code which may be caused by versions. I don't know... There are three pictures u need to draw a division boundary. The first calls 'visualizeBoundaryLinear.m…
引言 OK.时间非常快又过去了一周.第一周有五一假期所以感觉时间绰绰有余,这周中间没有假期仅仅能靠晚上加周末的时间来消化,事实上还是有点紧张呢! 后来发现每堂课的视频还有相应的课件(Slide).字幕(subtitles)能够下载.这样下载视频学习和在线学习就仅仅差课程中间的Exercise了 Week 2主要讲函数,函数在Scala里是first-class citizen,能够在随意域内出现.这门课事实上也是在借Scala来讲函数式编程原理. 好了,不多说.进入习题解析. 这周的作业主要是使…
原文:http://52opencourse.com/125/coursera%E5%85%AC%E5%BC%80%E8%AF%BE%E7%AC%94%E8%AE%B0-%E6%96%AF%E5%9D%A6%E7%A6%8F%E5%A4%A7%E5%AD%A6%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AC%AC%E5%85%AD%E8%AF%BE-%E9%80%BB%E8%BE%91%E5%9B%9E%E5%BD%92-logistic-regression…