[ML]熵.KL散度.信息增益.互信息-学习笔记 https://segmentfault.com/a/1190000000641079…
目录 机器学习基础--信息论相关概念总结以及理解 1. 信息量(熵) 2. KL散度 3. 交叉熵 4. JS散度 机器学习基础--信息论相关概念总结以及理解 摘要: 熵(entropy).KL 散度(Kullback-Leibler (KL) divergence)和交叉熵(cross-entropy)以及JS散度,在深度学习以及机器学习很多地方都用的到,尤其是对于目标函数和损失函数的定义.在逻辑回归问题中,目标函数就是用交叉熵定义的. 1. 信息量(熵) 信息论是应用数学的一个分支,主要研究…
机器学习的面试题中经常会被问到交叉熵(cross entropy)和最大似然估计(MLE)或者KL散度有什么关系,查了一些资料发现优化这3个东西其实是等价的. 熵和交叉熵 提到交叉熵就需要了解下信息论中熵的定义.信息论认为: 确定的事件没有信息,随机事件包含最多的信息. 事件信息的定义为:\(I(x)=-log(P(x))\):而熵就是描述信息量:\(H(x)=E_{x\sim P}[I(x)]\),也就是\(H(x)=E_{x\sim P}[-log(P(x))]=-\Sigma_xP(x)l…
引入1:随机变量函数的分布 给定X的概率密度函数为fX(x), 若Y = aX, a是某正实数,求Y得概率密度函数fY(y). 解:令X的累积概率为FX(x), Y的累积概率为FY(y). 则 FY(y) = P(Y <= y) = P(aX <= y) = P(X <= y/a) = FX(y/a), 则 fY(y) = d(FX(y/a)) / dy = 1/a * fX(x/a) 引入2:如何定义信息量 某事件发生的概率小,则该事件的信息量大: 如果两个事件X和Y独立,即p(xy)…
在这篇文章中,我们将探讨一种比较两个概率分布的方法,称为Kullback-Leibler散度(通常简称为KL散度).通常在概率和统计中,我们会用更简单的近似分布来代替观察到的数据或复杂的分布.KL散度帮助我们衡量在选择近似值时损失了多少信息. 让我们从一个问题开始我们的探索.假设我们是太空科学家,正在访问一个遥远的新行星,我们发现了一种咬人的蠕虫,我们想研究它.我们发现这些蠕虫有10颗牙齿,但由于它们不停地咀嚼,很多最后都掉了牙.在收集了许多样本后,我们得出了每条蠕虫牙齿数量的经验概率分布: 虽…
信息熵 信息量和信息熵的概念最早是出现在通信理论中的,其概念最早是由信息论鼻祖香农在其经典著作<A Mathematical Theory of Communication>中提出的.如今,这些概念不仅仅是通信领域中的基础概念,也被广泛的应用到了其他的领域中,比如机器学习. 信息量用来度量一个信息的多少.和人们主观认识的信息的多少有些不同,这里信息的多少用信息的在一个语境中出现的概率来定义,并且和获取者对它的了解程度相关,概率越大认为它的信息量越小,概率越小认为它的信息量越大.用以下式子定义:…
熵(entropy).KL 散度(Kullback-Leibler (KL) divergence)和交叉熵(cross-entropy)在机器学习的很多地方会用到.比如在决策树模型使用信息增益来选择一个最佳的划分,使得熵下降最大:深度学习模型最后一层使用 softmax 激活函数后,我们也常使用交叉熵来计算两个分布的“距离”.KL散度和交叉熵很像,都可以衡量两个分布之间的差异,相互之间可以转化. 1. 如何量化信息? 信息论是应用数学的一个分支,主要研究的是对一个信号包含信息的多少进行量化.信…
[ML学习笔记] 决策树与随机森林(Decision Tree&Random Forest) 决策树 决策树算法以树状结构表示数据分类的结果.每个决策点实现一个具有离散输出的测试函数,记为分支. 一棵决策树的组成:根节点.非叶子节点(决策点).叶子节点.分支 算法分为两个步骤:1. 训练阶段(建模) 2. 分类阶段(应用) 熵的概念 设用P(X)代表X发生的概率,H(X)代表X发生的不确定性,则有:P(X)越大,H(X)越小:P(X)越小,H(X)越大. 信息熵的一句话解释是:消除不确定性的程度…
[ML学习笔记] XGBoost算法 回归树 决策树可用于分类和回归,分类的结果是离散值(类别),回归的结果是连续值(数值),但本质都是特征(feature)到结果/标签(label)之间的映射. 这时候就没法用信息增益.信息增益率.基尼系数来判定树的节点分裂了,那么回归树采用新的方式是预测误差,常用的有均方误差.对数误差等(损失函数).而且节点不再是类别,而是数值(预测值),划分到叶子后的节点预测值有不同的计算方法,有的是节点内样本均值,有的是最优化算出来的比如Xgboost. XGBoost…
度量两个分布之间的差异 (一)K-L 散度 K-L 散度在信息系统中称为相对熵,可以用来量化两种概率分布 P 和 Q 之间的差异,它是非对称性的度量.在概率学和统计学上,我们经常会使用一种更简单的.近似的分布来替代观察数据或太复杂的分布.K-L散度能帮助我们度量使用一个分布来近似另一个分布时所损失的信息量.一般情况下,P 表示数据的真实分布,Q 表示数据的理论分布,估计的模型分布或者 P 的近似分布. (二)K-L 散度公式 ​ Note:KL 散度仅当概率 \(P\) 和 \(Q\) 各自总和…