「HNOI 2016」 序列】的更多相关文章

\(Description\) 给你一个序列,每次询问一个区间,求其所有子区间的最小值之和 \(Solution\) 这里要用莫队算法 首先令\(val\)数组为原序列 我们考虑怎么由一个区间\([l,r]\)到\([l,r+1]\) 我们发现新增加的区间为: \[[l,r+1],[l+1,r+1],[l+2,r+1]...[r,r+1],[r+1,r+1]\] 我们令\([l,r+1]\)内的最小值的位置为\(x\) 则\([l,r+1],[l+1,r+1]...[x-1,r+1],[x,r+…
LOJ#3054. 「HNOI 2019」鱼 https://loj.ac/problem/3054 题意 平面上有n个点,问能组成几个六个点的鱼.(n<=1000) 分析 鱼题,劲啊. 容易想到先枚举这个\(D\),然后极角序排一下,我们枚举\(A\),对\(B,E,F\)分别统计. 枚举\(A\)的过程中用一个指针维护\(E,F\)的范围,对答案贡献是一个\(\sum\binom{x}{2}\)的形式,容易维护. 然后现在要求\(B\)的方案数,可以发现符合条件的\(BC\)一定满足线段\(…
Problem Description 给定长度为 \(n\) 的序列:\(a_1, a_2, \cdots , a_n\),记为 \(a[1 \colon n]\).类似地,\(a[l \colon r]\)(\(1 \leq l \leq r \leq N\))是指序列:\(a_{l}, a_{l+1}, \cdots ,a_{r-1}, a_r\).若 \(1\leq l \leq s \leq t \leq r \leq n\),则称 \(a[s \colon t]\)是 \(a[l \…
\(Description\) 有\(n\)个元素,对于每个元素\(x_i\)最多知道一个形如\(x_j < x_i\)或\(x_j=x_i\)的条件,问有多少合法的序列.合法的序列满足每个元素出现一次,任一相邻两元素之间有小于号或或等于号,并且所有条件全部满足,但是对于两个序列,如果只修改相等元素的位置能使得他们一样,则是他们为同一序列,答案队\(10^9\)取模 \(n<=100\) \(Solution\) 认真读题后可以发现: 对于每个元素\(x_i\)最多知道一个形如\(x_j<…
loj 看着就很区间dp,所以考虑求\(f_{i,j}\)表示区间\([i,j]\)的答案.注意到贡献答案的方式是每次选一个连续段,拿走后剩下的段拼起来继续段,所以转移就考虑从最后一次选的方法转移过来,那么最后一次选的是原序列的一个连续段中挖掉一些小连续段的一些段.设辅助状态\(g_{i,j,p,q}\)表示区间\([i,j]\)要选出一个连续段,其中最小值为\(p\),最大值为\(q\)的最小代价,转移可以在左右两边接上一个\(f_{i,j}\)(这一段不在最终段中),或者接上一个在段内的元素…
\(\mathcal{Description}\)   Link & 双倍经验.   给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\{c_n\}\) 的个数,使得: \(\forall i~~~~c_i=0\lor c_i\in[a_i,b_i)\). \(\forall i<j~~~~c_i\not=0\land c_j\not=0\Rightarrow c_i<c_j\).   对 \(10^9+7\) 取模.   \(n…
一道清真的数论题 LOJ #3058 Luogu P5293 题解 考虑$ n=1$的时候怎么做 设$ s$为转移的方案数 设答案多项式为$\sum\limits_{i=0}^L (sx)^i\binom{L}{i}=(sx+1)^L$ 答案相当于这个多项式模$ k$的各项系数的和 发现这和LJJ学二项式定理几乎一模一样 我上一题的题解 然而直接搞是$ k^2$的,无法直接通过本题 以下都用$ w$表示$ k$次单位根 设$ F_i$为次数模$ k$为$ i$的项的系数和 单位根反演一下得到$F…
题目:https://loj.ac/problem/2292 直接 DP 很难做,主要是有那种 “一个区间内部有很多个别的区间” 的情况. 自己想了一番枚举 max-min 的最大限制,然后在该基础上最小化区间个数之类的.还是不会. 看了题解才会. 考虑再设一个 dp 数组来辅助表示那种麻烦的情况. 值可以离散化!又因为代价与值有关,可以考虑把值放进角标里. 令 f[ i ][ j ] 表示把 [ i , j ] 全取完的最小代价,g[ i ][ j ][ l ][ r ] 表示把 [ i ,…
题目:https://loj.ac/problem/2291 想了线段树合并的做法.就是用线段树维护 trie 的每个点在各种时间的操作. 然后线段树合并一番,线段树维护前缀最大值,就是维护最大子段和的套路,记录区间和.前缀 max .查询的时候,因为当前区间只记录了自己区间内部的前缀 max 值,所以要加一个 pr 表示该区间前面的区间和. 空间可能爆? RE 就没管.后来发现是 go[ ][ ] 开成 N 而非 M 了.这个做法还是可过的. 注意强制在线的 ans 是带绝对值的.注意 mx…
传送门 g[i][j][k][l]g[i][j][k][l]g[i][j][k][l]表示将区间l,rl,rl,r变成最小值等于kkk,最大值等于lll时的花费的最优值. f[i][j]f[i][j]f[i][j]表示取掉区间l,rl,rl,r的最优值. 考虑ggg数组的转移. g[i][j+1][min(k,w[j+1])][max(l,w[i+1])]=min(g[i][j+1][min(k,w[j+1])][max(l,w[i+1])],g[i][j][k][l])g[i][j+1][mi…