LDA概率图模型之贝叶斯理解】的更多相关文章

贝叶斯.概率分布与机器学习 转自:http://www.cnblogs.com/LeftNotEasy/archive/2010/09/27/1837163.html  本文由LeftNotEasy原创,可以转载,但请保留出处和此行,如果有商业用途,请联系作者 wheeleast@gmail.com 一. 简单的说贝叶斯定理: 贝叶斯定理用数学的方法来解释生活中大家都知道的常识 形式最简单的定理往往是最好的定理,比如说中心极限定理,这样的定理往往会成为某一个领域的理论基础.机器学习的各种算法中使…
http://blog.csdn.net/pipisorry/article/details/52489270 为什么用贝叶斯网络 联合分布的显式表示 Note: n个变量的联合分布,每个x对应两个值,共n个x,且所有概率总和为1,则联合分布需要2^n-1个参数. 贝叶斯网表示 独立性质的应用会降低参数数目,表达更紧凑. [PGM:贝叶斯网表示之朴素贝叶斯模型naive Bayes:独立性质的利用] 皮皮blog 贝叶斯网络 贝叶斯网络(Bayesian network),又称信念网络(Beli…
[导读]斯坦福大学的人工智能课程"CS 221"至今仍然是人工智能学习课程的经典之一.为了方便广大不能亲临现场听讲的同学,课程官方推出了课程笔记CheatSheet,涵盖4大类模型. 斯坦福大学的人工智能课程"CS 221",这门铁打的课程从2011年开始已经走过了8个年头,流水的讲师换了一批又一批,送走的毕业生一拨又一拨,至今仍然是人工智能学习的经典课程之一.目前2019年春季课程正在如火如荼的开展中. 这门课程是没有教科书的,所有内容都蕴含在讲师的教案以及课后作…
本篇博客是Daphne Koller课程Probabilistic Graphical Models(PGM)的学习笔记. 概率图模型是一类用图形模式表达基于概率相关关系的模型的总称.概率图模型共分为三个部分,分别为表示理论,推理理论和学习理论.基本的概率图模型包括贝叶斯网络.马尔科夫网络和隐马尔科夫网络. Student Example 一个学生,拥有成绩.课程难度.智力.SAT的分.推荐信等变量. 通过一张图可以把这些变量的关系表示出来,可以想象成绩由课程难度和智力决定,SAT成绩由智力决定…
1. 从贝叶斯方法(思想)说起 - 我对世界的看法随世界变化而随时变化 用一句话概括贝叶斯方法创始人Thomas Bayes的观点就是:任何时候,我对世界总有一个主观的先验判断,但是这个判断会随着世界的真实变化而随机修正,我对世界永远保持开放的态度. 1763年,民间科学家Thomas Bayes发表了一篇名为<An essay towards solving a problem in the doctrine of chances>的论文, 这篇论文发表后,在当时并未产生多少影响,但是在20…
一.一些概念 互信息: 两个随机变量x和Y的互信息,定义X, Y的联合分布和独立分布乘积的相对熵. 贝叶斯公式: 贝叶斯带来的思考: 给定某些样本D,在这些样本中计算某结论出现的概率,即 给定样本D 所以可以推出,再假定p(Ai)相等,可以推出,这个就是最大似然估计做的事情,看下取哪个参数的时候,D出现的概率最大,最大似然估计其实假定了任何参数被取到的概率都是一样的. 二.贝叶斯网络 随机变量之间并不是独立,而是存在复杂的网络关系.贝叶斯网络又称为有向无环图模型,是一个概率图模型(PGM),根据…
前言 gamma函数 0 整体把握LDA 1 gamma函数 beta分布 1 beta分布 2 Beta-Binomial 共轭 3 共轭先验分布 4 从beta分布推广到Dirichlet 分布 Dirichlet 分布 1 Dirichlet 分布 2 Dirichlet-Multinomial 共轭 主题模型LDA 1 各个基础模型 11 Unigram model 12 Mixture of unigrams model 2 PLSA模型 21 pLSA模型下生成文档 21 根据文档反…
通俗理解LDA主题模型 0 前言 印象中,最開始听说"LDA"这个名词,是缘于rickjin在2013年3月写的一个LDA科普系列,叫LDA数学八卦,我当时一直想看来着,记得还打印过一次,但不知是由于这篇文档的前序铺垫太长(如今才意识到这些"铺垫"都是深刻理解LDA 的基础,但假设没有人帮助刚開始学习的人提纲挈领.把握主次.理清思路,则非常easy陷入LDA的细枝末节之中),还是由于当中的数学推导细节太多,导致一直没有完整看完过. 2013年12月,在我组织的Mac…
0 前言 看完前面几篇简单的文章后,思路还是不清晰了,但是稍微理解了LDA,下面@Hcy开始详细进入boss篇.其中文章可以分为下述5个步骤: 一个函数:gamma函数 四个分布:二项分布.多项分布.beta分布.Dirichlet分布 一个概念和一个理念:共轭先验和贝叶斯框架 两个模型:pLSA.LDA(在本文第4 部分阐述) 一个采样:Gibbs采样 本文便按照上述5个步骤来阐述,希望读者看完本文后,能对LDA有个尽量清晰完整的了解.同时,本文基于邹博讲LDA的PPT.rickjin的LDA…
http://blog.csdn.net/pipisorry/article/details/52469064 独立性质的利用 条件参数化和条件独立性假设被结合在一起,目的是对高维概率分布产生非常紧凑的表示. 随机变量的独立性 [PGM:概率论基础知识:独立性性质的利用] 条件参数化方法 Note: P(I), P(S | i0), P(S | i1)都是二项式分布,都只需要一个参数. 皮皮blog 朴素贝叶斯模型naive Bayes 朴素贝叶斯模型的学生示例 {这个示例很好的阐述了什么是朴素…