题解 显然可以O(nlogn)计算 代码 //by 减维 #include<set> #include<map> #include<queue> #include<ctime> #include<cmath> #include<bitset> #include<vector> #include<cstdio> #include<cstring> #include<iostream> #i…
Luogu3455:莫比乌斯反演进行GCD计数 莫比乌斯反演就是用来解决这一类问题的,通常f函数是要求的那个,F函数是显然的 这样利用F的结果就可以推出来f的结果 在计算结果的时候整除分快儿一下就可以很快了 #include<cstdio> #include<algorithm> using std::min; ; int cnt; long long ans; bool vis[maxn]; int mu[maxn],sum[maxn]; long long prim[maxn]…
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4119 依然是三维空间内求(1,1,1)~(a,b,c)能看到的整点数,平移一下转化成(0,0,0)~(a-1,b-1,c-1)就和前一题就一样了 还是莫比乌斯反演求gcd(a,b,c)=1的组数,公式还是sigma{u(d) * ((a/d+1) * (b/d+1) * (c/d+1) - 1)} 但直接暴力会T...所以加了分块优化...因为当a/d,b/d,c/d的值保持…
UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13015 143295493160 Solution 这道题我用莫比乌斯反演和欧拉函数都写了一遍,发现欧拉函数比莫比乌斯反演优秀? 求所有\(gcd=k\)的数对的个数,记作\(f[k],ans=\sum_{i=1}^{n}(f[i]-1)\),为什么还要-1,我们注意到\(j=i+1\),自己与自己…
[题目]GCD of Divisors [题意]给定f(n)=Σd|n gcd(d,n/d)的前缀和F(n),n=10^15. [算法]莫比乌斯反演 [题解]参考:任之洲数论函数.pdf 这个范围显然杜教筛也是做不了的,而且考虑直接化简f(n)也遇到了困难,所以考虑将前缀和的Σ一起化简. $$F(n)=\sum_{i=1}^{n}\sum_{d|i}(d,\frac{i}{d})$$ 这一步很常见的是第一重改为枚举倍数,但这样化简后面就推不下去了. 这道题必须最后转成$\sigma_0(n)$才…
P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入样例#1: 4 输出样例#1: 4 说明 对于样例\((2,2),(2,4),(3,3),(4,2)\) \(1<=N<=10^7\) 来源:bzoj2818 本题数据为洛谷自造数据,使用CYaRon耗时5分钟完成数据制作. Solution 方法1:莫比乌斯反演,方法和yy的gcd一样 方法2:…
Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sample Output 4 Hint 对于样例(2,2),(2,4),(3,3),(4,2) 1<=N<=10^7 这个题目可以用欧拉函数或者莫比乌斯反演. 第一种欧拉函数: 因为gcd(x, y) = p,所以gcd(x/p, y/p) = 1. 不妨设y较大,那么就是求所有比y/p小的数k,ph…
易得 $\sum\limits_{g=1}^{n} g \sum\limits_{k=1}^{n} \mu(k) \lfloor\frac{n}{gk}\rfloor \lfloor\frac{n}{gk}\rfloor $ 记 \(T=gk\) 枚举 \(T\) ,注意这里既然满足 \(T=gk\) 要保证两个乘起来确实是 \(T\) ,选择把 \(k\) 换成 $\frac{T}{g} $ . $\sum\limits_{T=1}^{n} \lfloor\frac{n}{T}\rfloor…
题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对 1<=N<=10^7 思路:莫比乌斯反演,同BZOJ2820…… ; ..max]of int64; prime,flag,f,mu:..max]of longint; n,m,i,j,t,v,cas:longint; function clac(n:longint):int64; var x,i,pos:longint; begin clac:=; i:=; while i<=n do…
2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MB Submit: 2534  Solved: 1129 [Submit][Status][Discuss] Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sample Output 4 HINT hint 对于例子(2,2),(2,4),(3,3),(4,2)…
题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算​$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==prime]​$ 题解: 解法一:莫比乌斯反演套路题 其实这样就可以了,但是还可以优化一下子 设​​T=dp ​ 整除分块就好了,其实这就和 yy的gcd 一样了 解法二:欧拉函数 考虑上面的第一个式子​可以化简成 ​ tot是n以内质数的数量 这是因为考虑到每次都两次计算了​$\varphi(1)$…
题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌斯反演函数: void Init() { memset(vis,0,sizeof(vis)); mu[1] = 1; cnt = 0; for(int i=2; i<N; i++) { if(!vis[i]) { prime[cnt++] = i; mu[i] = -1; } for(int j=0;…
传送门 看了1个多小时,终于懂了一点了 题目大意:给n,m,k.求gcd(x,y) = k(1<=x<=n, 1<=y<=m)的个数 思路:令F(i)表示i|gcd(x,y)的(x,y)的对数,显然F(x)=[nx]∗[mx]. 设f(x)为gcd(x,y)=x的对数. 因为F(x)=∑i|xf(i),所以我们可以莫比乌斯反演它. 根据公式f(x)=∑x|dμ(d)F(d) 我们的目标就是f(1)(因为n和m都可以除以k) 所以我们就可以在O(n)的时间复杂度内求出答案了. #in…
GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4291    Accepted Submission(s): 1502 Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y)…
GCD SUM Time Limit: 8000/4000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others) SubmitStatisticNext Problem Problem Description 给出N,M执行如下程序:long long  ans = 0,ansx = 0,ansy = 0;for(int i = 1; i <= N; i ++)   for(int j = 1; j <= M; j ++)     …
SPOJ Problem Set (classical) 7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at (N,N,N). How many lattice points are visible from corner at (0,0,0) ? A point X is visible…
题意: 从区间[1, b]和[1, d]中分别选一个x, y,使得gcd(x, y) = k, 求满足条件的xy的对数(不区分xy的顺序) 分析: 虽然之前写过一个莫比乌斯反演的总结,可遇到这道题还是不知道怎么应用. 这里有关于莫比乌斯反演的知识,而且最后的例题中就有这道题并给出了公式的推导. 在最后的例题2中有个重要的结论: #include <cstdio> #include <algorithm> typedef long long LL; ; ], vis[maxn + ]…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2818 [题意] 问(x,y)为质数的有序点对的数目. [思路一] 定义f[i]表示i之前(x,y)=1的有序点对的数目,则有递推式: f[1]=1 f[i]=f[i-1]+phi[i]*2 我们依次枚举小于n的所有素数,对于素数t,(x,y)=t的数目等于(x/t,y/t),即f[n/t]. [代码一] #include<cstdio> #include<cstring>…
首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一个整数表示满足要求的数对(x,y)的个数 Sample Input 2 2 5 1 5 1 1 5 1 5 2 Sample Output 14 3 HI…
GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= d使得gcd(p,q) = k; 注:对于(p,q)和(q,p)只算一次: 思路:由于遍历朴素求两个数的gcd的时间复杂度为O(n^2*log(n)),朴素算法遍历搜索在判断累加,所以效率很低: 资料   NanoApe's Blog   ACdreamers 莫比乌斯反演:利用整与分之间的可逆来由整体利用…
题目链接 这题求[1,n],[1,m]gcd为k的对数.而且没有顺序. 设F(n)为公约数为n的组数个数 f(n)为最大公约数为n的组数个数 然后在纸上手动验一下F(n)和f(n)的关系,直接套公式就好了.注意要删去重复的. 关于 莫比乌斯反演 的结论 #include<bits/stdc++.h> using namespace std; typedef long long LL; const int maxn=1e6; ]; ]; ]; void init() { mu[]=; ; ;i&…
[BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{d=1}^n[d\_is\_prime]\sum_{i=1}^{n/d}[\frac{n}{id}][\frac{m}{id}]\] 老套路了 令\(T=id\) \[ans=\sum_{T=1}^{n}[\frac{n}{T}][\frac{m}{T}]\sum_{d|T}[d\_is\_prim…
[UVa11426]GCD - Extreme (II)(莫比乌斯反演) 题面 Vjudge 题解 这.. 直接套路的莫比乌斯反演 我连式子都不想写了 默认推到这里把.. 然后把\(ans\)写一下 \[ans=\sum_{d=1}^nd\sum_{i=1}^{n/d}\mu(i)[\frac{n}{id}]^2\] 令\(T=id\) 然后把\(T\)提出来 \[ans=\sum_{T=1}^n[\frac{n}{T}]^2\sum_{d|T}d\mu(\frac{T}{d})\] 后面那一堆…
[BZOJ2818]Gcd(莫比乌斯反演) 题面 Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sample Output 4 HINT 对于样例(2,2),(2,4),(3,3),(4,2) 1<=N<=10^7 题解 题目要求的: \[\sum_{i=1}^n\sum_{j=1}^n[gcd(i,j)\_is\_prime]\] 把因数提出来…
[CJOJ2512]gcd之和(莫比乌斯反演) 题面 给定\(n,m(n,m<=10^7)\) 求 \[\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)\] 题解 首先把公因数直接提出来 \[\sum_{d=1}^nd\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}[gcd(i,j)==1]\] 很明显 设 \[f(x)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)==x]\] \[g(x)=\sum_{x|d}f(d)\] \[g(…
[HDU1695]GCD(莫比乌斯反演) 题面 题目大意 求\(a<=x<=b,c<=y<=d\) 且\(gcd(x,y)=k\)的无序数对的个数 其中,你可以假定\(a=c=1\) 所有数都\(<=100000\) 数据组数\(<=3000\) 题解 莫比乌斯反演 作为一道莫比乌斯反演的题目 首先我们要迈出第一步 如果有\(gcd(x,y)=k\) 那么,我们就有\(gcd(\frac{x}{k},\frac{y}{k})=1\) 所以,现在问题相当于转化为了求 \(…
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少\((x,y)\)满足\(gcd(x,y)\in \mathbb{P}\) 数据范围 \(T=10000\),\(1\leqslant N,M\leqslant 10000000\) 显然,暴力不可做. 这种公约数计数的题貌似大多都是用莫比乌斯反演做的?套路啊,套路. 首先,我们先很套路地设一个函数…
题目:GCD SUM 题目链接:http://www.bnuoj.com/v3/problem_show.php?pid=39872 算法:莫比乌斯反演.优化 #include<stdio.h> #define N 100001 typedef long long LL; }; ; int mu[N]; LL f[N],ff[N]; //缩短时间 /* 莫比乌斯函数mu[i]的定义: 1. 如果 i 是素数,那么mu[i]为-1; 2. 如果 i 是由多个不同的素数组成的,那么mu[i]为-1…
BUPT2017 wintertraining(15) #5H HDU- 4947 题意 有一个长度为l的数组,现在有m个操作,第1种为1 n d v,给下标x 满足gcd(x,n)=d的\(a_x\)增加v.第2种为2 x,查询\(\sum_{i=1}^x a_i\). 数据范围:\(1\le n,d,v\le2\cdot 10^5,1\le x\le l\) 题解 设\(f_i\)满足\(a_i=\sum_{d|i} f_d\),用树状数组存储\(f_i\)的前缀和. \[a_x+=v\cd…
GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 17212    Accepted Submission(s): 6637 Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x,…