spark 笔记 1: 如何着手】的更多相关文章

必读:从官方的开发者页面着手,包括如何构建spark以及编码规范(强烈建议读读编程规范)等:https://cwiki.apache.org/confluence/display/SPARK/Contributing+to+Spark 必读: 官方文档简介:http://spark.apache.org/docs/latest/,以及这里的所有超链接都应该看一遍.应该有个印象: 必读: RDD的论文:http://www.cs.berkeley.edu/~matei/papers/2012/ns…
spark笔记 spark简介 saprk 有六个核心组件: SparkCore.SparkSQL.SparkStreaming.StructedStreaming.MLlib,Graphx SparkCore 相当于Hadoop中的MapReduce,用于大规模离线批处理计算 SparkSQL 相当于Hive(稍微类似),用于交互式计算 注意: 1.交互式计算:用户界面中的查询条件进行过滤查询,然后交给SparkSQL进行处理,产生输出数据.速度比较快 2.交互式计算框架:Presto.Imp…
变量的定义 val a: Int = 1 var b = 2 方法和函数 区别:函数可以作为参数传递给方法 方法: def test(arg: Int): Int=>Int ={ 方法体 } val fun = (test _: Int =>(Int=>Int))=>函数体 逻辑执行语句 val a = if(条件){ 执行逻辑 返回值 }else{ 执行逻辑 } while(条件){ 执行逻辑 } val arr = Array(1,2,3,4,5) for(i <- 0…
先看一下原理性的文章:http://jerryshao.me/architecture/2013/10/08/spark-storage-module-analysis/ ,http://jerryshao.me/architecture/2013/10/08/spark-storage-module-analysis/  , 另外,spark的存储使用了Segment File的概念(http://en.wikipedia.org/wiki/Segmented_file_transfer ),…
无论是Hadoop还是spark,shuffle操作都是决定其性能的重要因素.在不能减少shuffle的情况下,使用一个好的shuffle管理器也是优化性能的重要手段. ShuffleManager的主要功能是在task直接传递数据,所以getWriter和getReader是它的主要接口. 大流程:   1)需求方:当一个Stage依赖于一个shuffleMap的结果,那它在DAG分解的时候就能识别到这个依赖,并注册到shuffleManager:   2)供应方:也就是shuffleMap,…
延迟调度算法的实现是在TaskSetManager类中的,它通过将task存放在四个不同级别的hash表里,当有可用的资源时,resourceOffer函数的参数之一(maxLocality)就是这些资源的最大(或者最优)locality级别,如果存在task满足资源的locality,那从最优级别的hash表.也就是task和excutor都有loclity级别,如果能找到匹配的task,那从匹配的task中找一个最优的task.    =====================延迟调度算法=…
spark的Executor是执行task的容器.和java的executor概念类似. ===================start executor runs task============================ ->CoarseGrainedExecutorBackend::receiveWithLogging --接收CoarseGrainedSchedulerBackend发来的消息 ->case LaunchTask(data) =>  处理启动task的消息…
调度算法的最基本工作之一,就是比较两个可执行的task的优先级.spark提供的FIFO和FAIR的优先级比较在SchedulingAlgorithm这个接口体现.) { ) { ) { ) { false } else {----如果所有上述的比较都相同,那么名字小的优先(哈哈,名字很重要):名字相同,则s2优先级高. s1.name < s2.name } }} 来自为知笔记(Wiz)…
任务调度器的接口类.应用程序可以定制自己的调度器来执行.当前spark只实现了一个任务调度器) )))))val createTime = System.currentTimeMillis()class DriverActor(sparkProperties: Seq[(String, String)]) extends Actor with ActorLogReceive { override protected def log = CoarseGrainedSchedulerBackend.…
Stage 是一组独立的任务,他们在一个job中执行相同的功能(function),功能的划分是以shuffle为边界的.DAG调度器以拓扑顺序执行同一个Stage中的task. /** * A stage is a set of independent tasks all computing the same function that need to run as part * of a Spark job, where all the tasks have the same shuffle…