tf.reshape】的更多相关文章

tf.reshape(tensor,shape,name=None) 函数的作用是将tensor变换为参数shape形式,其中的shape为一个列表形式,特殊的是列表可以实现逆序的遍历,即list(-1):-1所代表的含义是我们不用亲自去指定这一维的大小,函数会自动进行计算,但是列表中只能存在一个-1.(如果存在多个-1,就是一个存在多解的方程) >>>import numpy as np >>>a = np.array([[1,2,3],[4,5,6]]) >&…
函数原型为 def reshape(tensor, shape, name=None) 第1个参数为被调整维度的张量. 第2个参数为要调整为的形状. 返回一个shape形状的新tensor 注意shape里最多有一个维度的值可以填写为-1,表示自动计算此维度. 很简单的函数,如下,根据shape为[5,8]的tensor,生成一个新的tensor import tensorflow as tf alist = [[1, 2, 3, 4, 5, 6 ,7, 8], [7, 6 ,5 ,4 ,3 ,…
1.  tf.split(3, group, input)  # 拆分函数    3 表示的是在第三个维度上, group表示拆分的次数, input 表示输入的值 import tensorflow as tf import numpy as np x = [[1, 2], [3, 4]] Y = tf.split(axis=1, num_or_size_splits=2, value=x) sess = tf.Session() for y in Y: print(sess.run(y))…
tf.reshape(tensor, shape, name=None) 其中,tensor是向量,或者说矩阵 shape是转换后的向量,或者转换后的矩阵形状 [2,1]转换成二行一列 [2,-1]转成二行,几列呢?由于-1的意思是,计算机自己计算需要几列,反正我就要两行. -1表示计算机自己计算参数…
在处理图像数据的时候总会遇到输入图像的维数不符合的情况,此时tensorflow中reshape()就很好的解决了这个问题. 更为详细的可以参考官方文档说明: numpy.reshape reshape()的括号中所包含的参数有哪些呢?常见的写法有tf.reshape((28,28)): tf.reshape(tensor,shape,name=None) 函数的作用是将tensor变换为参数shape形式,其中的shape为一个列表形式,特殊的是列表可以实现逆序的遍历,即list(-1).-1…
有了数据,有了网络结构,下面我们就来写 cifar10 的代码. 首先处理输入,在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10_input.py,输入如下代码: from __future__ import absolute_import # 绝对导入 from __future__ import division # 精确除法,/是精确除,//是取整除 from __future__ import print_function # 打印函数…
TensorFlow 的 How-Tos,讲解了这么几点: 1. 变量:创建,初始化,保存,加载,共享: 2. TensorFlow 的可视化学习,(r0.12版本后,加入了Embedding Visualization) 3. 数据的读取: 4. 线程和队列: 5. 分布式的TensorFlow: 6. 增加新的Ops: 7. 自定义数据读取: 由于各种原因,本人只看了前5个部分,剩下的2个部分还没来得及看,时间紧任务重,所以匆匆发车了,以后如果有用到的地方,再回过头来研究.学习过程中深感官方…
import tensorflow as tf import tensorflow.contrib.slim as slim import rawpy import numpy as np import tensorflow as tf import struct import glob import os from PIL import Image import time __sony__ = 0 __huawei__ = 1 __blackberry__ = 2 __stage_raw2ra…
1. tf.layers.conv2d(input, filter, kernel_size, stride, padding) # 进行卷积操作 参数说明:input输入数据, filter特征图的个数,kernel_size卷积核的大小,stride步长,padding是否补零 2. tf.layers.conv2d_transpose(input, filter, kernel_size, stride, padding) # 进行反卷积操作 参数说明:input输入数据, filter特…
1. tf.nn.moments(x, axes=[0, 1, 2])  # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的feature_map, axes=[0, 1, 2] 对三个维度求平均,即每一个feature_map都获得一个平均值和标准差 2.with tf.control_dependencies([train_mean, train_var]): 即执行with里面的操作时,会先执行train_mean 和…