首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
STM32 晶振 系统时钟8MHZ和72Mhz的原因
】的更多相关文章
STM32 晶振 系统时钟8MHZ和72Mhz的原因
首先问题描述: 1.自己画的板子和淘宝买的最小系统板 系统时钟不一致,自己画的是8Mhz,HSE失败:最小系统板72Mhz 2.最小系统板在程序1运行仿真的时候,查看peripherals->Power,Reset and Clock Control(PRCC)是72MHZ,在程序2仿真的时候是8Mhz,程序SystemInit()所在的文件一模一样: 3.出现过8M晶振坏了,更换晶振后时钟源正常72Mhz 问题1原因: 1.注意晶振的匹配电容的值,测试版发现系统时钟有问题时,可以是晶振不起振,…
stm32 晶振不起振
1. STM32f103有内部晶振.刚刚上电时,所有Clock都是源于内部晶振,所以当片内没有程序或内部程序没有使能外部晶振时,外部晶振是不会起振的.2. STM32f103有内部复位电路,只有当检测到外部电压大于电压阀值时才会启动.因为需要检测外部电压,所以模拟Ref/VDDA/VSSA不能开路,做实验是可以将Ref/VDDA与3.3V链接,VSSA与GND链接.3. 串口连接时,要记得正确配置好Boot0和Boot1引脚的电平.4. Jlink链接时,要注意是JTAG模式还是SWD模式.(一…
STM32系统时钟
一.时钟树 STM32有4个时钟源: 1)HSE(高速外部时钟源) 外部晶振作为时钟源,范围为4~16MHz,常取为8MHz 2)HSI(高速内部时钟源) 由内部RC振荡器产生,频率为8MHz,但不稳定 3)LSE(低速外部时钟) 以外部晶振作为时钟源,主要供给实时时钟模块,一般用32.768KHz. 4)LSI(低速内部时钟) 由内部RC振荡器产生,也是提供给实时时钟模块,频率约为40KHz. 二.系统启动过程中时钟设置过程 以使用STM32库函数SystemInit为例进…
stm32之Systick(系统时钟)
Systick的两大作用: 1.可以产生精确延时: 2.可以提供给操作系统一个单独的心跳(时钟)节拍: 通常实现Delay(N)函数的方法为: for(i=0;i<x;i++) ; 对于STM32系统微处理器来说,执行一条指令只有几十ns(纳秒),进入for循环,要实现N毫秒的x值非常大:而由于系统频率的宽广,很难计算出延时N毫秒的精确值:针对STM32微处理器,需要重新设计一个新的方法去实现该功能,以实现在程序中使用Delay(N): cortex的内核中包含一个SysTick时钟,SysTi…
换晶振导致stm32串口数据飞码的解决办法
一般来说,stm32f107都是用标配的晶振,比如8MHz. 但是,如果用别的晶振,比如13.56M的晶振,那串口接收还正常吗? 根据试验结果,很可能会飞码.比如说用串口助手发送的是0x35,但是在串口接收中断里面就会得到别的值,即上位机发送的数据和板子接收的数据不一致. 通过查资料,解决办法如下: 修改文件stm32f10x.h, 把 #define HSE_VALUE ((uint32_t)8000000) /*!< Value of the External oscillator i…
关于STM32外接4—16MHz晶振主频处理方法
由于STM32F10x库官方采用的是默认的外接8MHz晶振,因此造成很多用户也采用了8MHz的晶振,但是,8MHz的晶振不是必须的,其他频点的晶振也是可行的,只需要在库中做相应的修改就行. 在论坛上看到很多用户反映,使用外接12MHz的晶振,会造成很多的问题,如USART的波特率不正确,Systick走时不准等问题,在无论是在实际调试还是在软件模拟中都会发现这个情况,其实,这不能怪ST官方,我们必须肯定ST官方为方便用户开发所做的努力,下面我们就通过简单的三个步骤就可以让你随意的使用4—1…
STM32单片机最小系统
1.单片机最小系统的组成部分 STM32单片机最小系统由①主芯片,②上电复位电路,③时钟电路,④电源供电电路组成.同时一个基本完整的单片机功能还应包括下载电路和LED指示电路. 2.单片机主芯片 单片机型号的选择主要根据价格成本.所要完成任务所需要功能等确定.可以根据STM8和STM32产品选型手册确定.可见附录链接. 本次选用STM32F103RCT6作为中心控制芯片.STM32F103RCT6基于ARM Cortex-M内核,具有高性能.低成本.低功耗的优点,片上资源包括48KB SRAM,…
msp430系统时钟
转自 http://m.blog.csdn.net/blog/msdumin/38441493# MSP430基础时钟模块包含以下3个时钟输入源. 一.4个时钟振荡源 1.LFXT1CLK: 外部晶振或时钟1 低频时钟源 低频模式:32768Hz 高频模式:(400KHz-16MHz) 2.XT2CLK: 外部晶振或时钟2 高频时钟源(400KHz-16MHz) 3.DCOCLK: 内部数字RC振荡器,复位值1.1MHz 4.VLOCLK: 内部低功耗振荡器 12KH…
ARM系统时钟初始化
2440时钟体系,12MHz的晶振 6410时钟体系,12MHz的晶振 210时钟体系,24MHz晶振 时钟初始化:1.设置locktime 2.设置分频系数 4.设置CPU到异步工作模式 3.设置fclk .text .global _start _start: b reset ldr pc, _undefined_instruction ldr pc, _software_interrupt ldr pc, _prefetch_abort ldr pc, _data_abort ldr pc…
STM32F030 启用内部晶振并配置系统时钟为48M
在文件 system_stm32f0xx.c 里的函数 static void SetSysClock(void) { if (HSEStatus == (uint32_t)0x01) // 存在外部时钟{} else {// 这里添加配置48M代码} } 代码如下 static void SetSysClock(void) { __IO uint32_t StartUpCounter = , HSEStatus = ; /* SYSCLK, HCLK, PCLK configuration -…