DCT变换的原理及算法 文库介绍 对于初学数字信号处理(DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. 学习过<高等数学>和<信号与系统>这两门课的朋友,都知道时域上任意连续的周期信号可以分解为无限多个正弦信号之和,在频域上就表示为离散非周期的信号,即时域连续周期对应频域离散非周期的特点,这就是傅里叶级数展开(FS),它用于分析连续周期信号. FT是傅里叶变换,它主要用于分析连续非周期信号,由于信号是非周期的,它必包含了各种频率的信号,…
一.按时间抽选的基-2 FFT实现原理 观察DIT(基2)FFT的流图(N点,N为2的幂次),可以总结出如下规律: (1)共有\(L=\log_2⁡N\)级蝶形运算: (2)输入倒位序,输出自然顺序: (3)第\(m\)级(\(m\)从1开始,下同)蝶形结对偶结点距离为\(2^{m-1}\): (4)第\(m\)级蝶形结计算公式: \(X_m (k)=X_{m-1} (k)+X_{m-1 } (k+2^{m-1} ) W_N^r\) \(X_m (k+2^{m-1} )=X_{m-1} (k)-…
DCT变换的原理及算法 文库介绍 对于初学数字信号处理(DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. 学习过<高等数学>和<信号与系统>这两门课的朋友,都知道时域上任意连续的周期信号可以分解为无限多个正弦信号之和,在频域上就表示为离散非周期的信号,即时域连续周期对应频域离散非周期的特点,这就是傅里叶级数展开(FS),它用于分析连续周期信号. FT是傅里叶变换,它主要用于分析连续非周期信号,由于信号是非周期的,它必包含了各种频率的信号,…
对于初学数字信号(Digital Signal Processing,DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. FS:时域上任意连续的周期信号可以分解为无限多个正弦信号之和,在频域上就表示为离散非周期的信号,即时域连续周期对应频域离散非周期的特点,这就是傅立叶级数展开(Fourier Series,FS),它用于分析连续周期信号. FT:是傅立叶变换(Fourier Transform,FT),它主要用于分析连续非周期信号,由于信号是非周期的,…
很多同学学习了数字信号处理之后,被里面的几个名词搞的晕头转向,比如DFT,DTFT,DFS,FFT,FT,FS等,FT和FS属于信号与系统课程的内容,是对连续时间信号的处理,这里就不过多讨论,只解释一下前四者的关系. 首先说明一下,我不是数字信号处理专家,因此这里只站在学生的角度以最浅显易懂的性质来解释问题,而不涉及到任何公式运算. 学过卷积,我们都知道有时域卷积定理和频域卷积定理,在这里只需要记住两点:1.在一个域的相乘等于另一个域的卷积:2.与脉冲函数的卷积,在每个脉冲的位置上将产生一个波形…
原址:http://www.cnblogs.com/BitArt/archive/2012/11/24/2786390.html 很多同学学习了数字信号处理之后,被里面的几个名词搞的晕头转向,比如DFT,DTFT,DFS,FFT,FT,FS等, FT和FS属于信号与系统课程的内容,是对连续时间信号的处理,这里就不过多讨论,只解释一下前四者的关系. 首先说明一下,我不是数字信号处理专家,因此这里只站在学生的角度以最浅显易懂的性质来解释问题,而不涉及到任何公式运算. 学过卷积,我们都知道有时域卷积定…
从DFS到DFT 周期序列的级数展开 正如连续时间周期信号可以表示为一系列正弦信号的和的形式,周期序列也可以表示为一系列正弦之和的形式,假设序列\(\tilde{x}[n]\)的周期为\(N\),那么它的基频为\(\frac{2\pi}{N}\),所以有 \[ \tilde{x}[n]=\frac{1}{N}\sum_{k=0}^{N-1}\tilde{X}[k]e^{j\frac{2\pi}{N}kn} \] 这里与连续时间信号不同的是,不需要无穷多个成谐波关系的复指数,只需要\(N\)个成…
在数字信号处理中常常需要用到离散傅立叶变换(DFT),以获取信号的频域特征.尽管传统的DFT算法能够获取信号频域特征,但是算法计算量大,耗时长,不利于计算机实时对信号进行处理.因此至DFT被发现以来,在很长的一段时间内都不能被应用到实际的工程项目中,直到一种快速的离散傅立叶计算方法--FFT,被发现,离散傅立叶变换才在实际的工程中得到广泛应用.需要强调的是,FFT并不是一种新的频域特征获取方式,而是DFT的一种快速实现算法.本文就FFT的原理以及具体实现过程进行详尽讲解. DFT计算公式 本文不…
一.前言 FFT运算是目前最常用的信号频谱分析算法.在本科学习数字信号处理这门课时一直在想:学这些东西有啥用?公式推来推去的,有实用价值么?到了研究生后期才知道,广义上的数字信号处理无处不在:手机等各种通信设备和WIFI的物理层信号处理.摄像头内的ISP.音频信号的去噪等.各种算法中,FFT是查看信号本质,也就是频谱的重要手段.之前仅直接调用FFT/IFFT IP核,今天深入探讨下算法本身和实现方案. 二.FFT运算原理及结构 本文仅对FFT的核心思想.作用和算法结构进行介绍,FFT具体原理和公…
摘要:Fourier transform 是一个强大的概念,用于各种领域,从纯数学到音频工程甚至金融. 本文分享自华为云社区<使用 scipy.fft 进行Fourier Transform:Python 信号处理>,作者: Yuchuan. scipy.fft模块 傅立叶变换是许多应用中的重要工具,尤其是在科学计算和数据科学中.因此,SciPy 长期以来一直提供它的实现及其相关转换.最初,SciPy 提供了该scipy.fftpack模块,但后来他们更新了他们的实现并将其移到了scipy.f…