AT2000 Leftmost Ball(计数dp+组合数学)】的更多相关文章

传送门 解题思路 设\(f[i][j]\)表示填了\(i\)个白色,\(j\)种彩色的方案数,那么显然\(j<=i\).考虑这个的转移,首先可以填一个白色,就是\(f[i][j]=f[i-1][j]*(n-i+1)\).第二种情况是填一个彩色,这里有一点需要注意,不能直接用组合数,这样的话会有重复,我们可以强行安排一个顺序,这种颜色的第一个被变成了白色,第二个就直接跟在上一种彩色的后面,这样就可以做到不重不漏了,那么第二个转移就是\(f[i][j]=f[i][j-1]*C(n*k-(i+(j-1…
[题目]F - Leftmost Ball [题意]给定n种颜色的球各k个,每次以任意顺序排列所有球并将每种颜色最左端的球染成颜色0,求有多少种不同的颜色排列.n,k<=2000. [算法]计数DP [题解]只看黑体字部分即可. 自己考虑了几种计数方案,都不能实现.一种从左到右,但要记录每种球剩余多少,不可行.一种从右到左枚举白球包含区间填充,但因为只看白球,每种颜色没有关键球,会有重复统计的问题. 计数的关键在于白球的原色不重要以及每种颜色关注最左端的球(这里不含变成白球的球). 本题既然nk…
传送门 dp妙题啊. 我认为DZYODZYODZYO已经说的很好了. 强制规定球的排序方式. 然后就变成了一个求拓扑序数量的问题. 代码: #include<bits/stdc++.h> using namespace std; inline int read(){ int ans=0,w=1; char ch=getchar(); while(!isdigit(ch)){if(ch=='-')w=-1;ch=getchar();} while(isdigit(ch))ans=(ans<…
Atcoder 题面传送门 & 洛谷题面传送门 这道 Cu 的 AGC F 竟然被我自己想出来了!!!((( 首先考虑什么样的序列会被统计入答案.稍微手玩几组数据即可发现,一个颜色序列 \(c_1,c_2,\cdots,c_{nk}\) 满足条件当前仅当对于从左往右数第 \(i\) 个 \(0\) 号颜色的位置 \(p_i\),\([1,p_i-1]\) 中非零颜色的种类 \(<i\).简单证明一下,必要性:如果 \(\exist i\in[1,n]\) 满足 \([1,p_i-1]\) 中…
设\(f[i][j]\)表示当前有\(i\)个白球,一共放完了\(j\)种球 显然有\(j <= i\) 对于每个状态目前已经放下去的球是固定了的,那么考虑转移 放白球 从\(f[i - 1][j]\)转移 放没有出现过的球 \((n - j + 1) * f[i][j - 1] * C(k - 2, n * k - i - (j - 1) * (k - 1) - 1)\) 第二种的C是钦定第一个球放在已经构造好了的合法序列的后面第一个空位,然后剩下的\(k-2\)个球放在剩下的\(n * k…
题面 给你n种颜色的球,每个球有k个,把这n*k个球排成一排,把每一种颜色的最左边出现的球涂成白色(初始球不包含白色),求有多少种不同的颜色序列,答案对1e9+7取模 解法 设\(f(i,\;j)\)表示在这些\((n \times k个)\)位置上已经放了i个白球,j种其他颜色的球.(i<j) \(f(i,\;j) = f(i-1,\; j)+f(i ,\;j-1)\times (n-j+1)\times \dbinom{k-2}{n*k-i-(j-1)*(k-1)-1}\) 第一部分: 加一…
Problem Statement Snuke loves colorful balls. He has a total of N×K balls, K in each of his favorite N colors. The colors are numbered 1 through N. He will arrange all of the balls in a row from left to right, in arbitrary order. Then, for each of th…
给定一个 \(H*W\)的棋盘,棋盘上只有\(N\) 个格子是黑色的,其他格子都是白色的. 在棋盘左上角有一个卒,每一步可以向右或者向下移动一格,并且不能移动到黑色格子中.求这个卒从左上角移动到右下角,一共有多少种可能的路线 \(1\le H,W\le 10^5,1\le N\le 2000\) 输出对\(10^9+7\)取模 H,W巨大,普通DP不用想,考虑如何用黑格子计数 由组合数学知识可知,从S到T的总路径条数为\(C_{H+W-2}^{H-1}\),只要减去至少经过一个黑格子的路径条数即…
分析:首先定义状态dp[i][j][s1][s2]代表前i个物品中,选若干个物品,总价值为j 其中s1个物品时必选,s2物品必不选的方案数 那么转移的时候可以考虑,第i个物品是可选可可不选的 dp[i][j][s1][s2]+=dp[i-1][j][s1][s2]+dp[i-1][j-a[i]][s1][s2] 或者第i个物品必选,或者必不选 dp[i][j][s1][s2]+=dp[i-1][j-a[i]][s1-1][s2]+dp[i-1][j][s1][s2-1] 一点感想:这个题边界时d…
Word Cut Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u Submit Status Practice CodeForces 176B Description Let's consider one interesting word game. In this game you should transform one word into another through specia…